IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v39y2013i1p27-34.html
   My bibliography  Save this article

Data aggregation in stochastic frontier models: the closed skew normal distribution

Author

Listed:
  • B. Brorsen
  • Taeyoon Kim

Abstract

The effect of aggregation on estimates of stochastic frontier functions is considered. Inefficiency is assumed associated with the individual units being aggregated. In this case, the aggregated data have a closed skew normal distribution. Estimating the parameters of a closed skew normal distribution is difficult and so we focus mostly on the biases created by ignoring the fact that the data are aggregated. The conclusions are based on both analytical and Monte Carlo results. When data for firms are aggregates over smaller units and the inefficiency is associated with the units and not the firm, empirical work that does not consider the effect of aggregation will attribute the inefficiency of large firms to diseconomies of scale. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • B. Brorsen & Taeyoon Kim, 2013. "Data aggregation in stochastic frontier models: the closed skew normal distribution," Journal of Productivity Analysis, Springer, vol. 39(1), pages 27-34, February.
  • Handle: RePEc:kap:jproda:v:39:y:2013:i:1:p:27-34
    DOI: 10.1007/s11123-012-0274-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-012-0274-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-012-0274-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    2. James M. MacDonald & Michael E. Ollinger, 2000. "Scale Economies and Consolidation in Hog Slaughter," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(2), pages 334-346.
    3. Hadri, Kaddour, 1999. "Estimation of a Doubly Heteroscedastic Stochastic Frontier Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 359-363, July.
    4. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    5. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    6. Francisca Richter & B. Brorsen, 2006. "Aggregate Versus Disaggregate Data in Measuring School Quality," Journal of Productivity Analysis, Springer, vol. 25(3), pages 279-289, June.
    7. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    8. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    9. Adkins, Lee C. & Moomaw, Ronald L., 2003. "The impact of local funding on the technical efficiency of Oklahoma schools," Economics Letters, Elsevier, vol. 81(1), pages 31-37, October.
    10. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    11. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhard Dalheimer & Christoph Kubitza & Bernhard Brümmer, 2022. "Technical efficiency and farmland expansion: Evidence from oil palm smallholders in Indonesia," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1364-1387, August.
    2. Christopher N. Boyer & B. Wade Brorsen & Emmanuel Tumusiime, 2015. "Modeling skewness with the linear stochastic plateau model to determine optimal nitrogen rates," Agricultural Economics, International Association of Agricultural Economists, vol. 46(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Belotti & Silvio Daidone & Giuseppe Ilardi & Vincenzo Atella, 2013. "Stochastic frontier analysis using Stata," Stata Journal, StataCorp LP, vol. 13(4), pages 718-758, December.
    2. Cristian Barra & Nazzareno Ruggiero, 2022. "How do dimensions of institutional quality improve Italian regional innovation system efficiency? The Knowledge production function using SFA," Journal of Evolutionary Economics, Springer, vol. 32(2), pages 591-642, April.
    3. Fabio Pieri & Enrico Zaninotto, 2010. "The Impact of Vertical Integration and Outsourcing on Firm Efficiency: Evidence from the Italian Machine Tool Industry," DISA Working Papers 1001, Department of Computer and Management Sciences, University of Trento, Italy, revised 11 Mar 2010.
    4. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    5. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    6. Giovanni Marin & Alessandro Palma, 2015. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Working Papers 2015.104, Fondazione Eni Enrico Mattei.
    7. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    8. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    9. Mäkinen, Mikko, 2007. "Do Stock Opiton Schemes Affect Technical Inefficiency? Evidence from Finland," Discussion Papers 1085, The Research Institute of the Finnish Economy.
    10. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    11. Fabio Pieri & Enrico Zaninotto, 2013. "Vertical integration and efficiency: an application to the Italian machine tool industry," Small Business Economics, Springer, vol. 40(2), pages 397-416, February.
    12. Glass, Anthony J. & Kenjegalieva, Karligash & Sickles, Robin C. & Weyman-Jones, Thomas, 2016. "The Spatial Efficiency Multiplier and Random Effects in Spatial Stochastic Frontier Models," Working Papers 16-002, Rice University, Department of Economics.
    13. Vanesa D’Elia & Gustavo Ferro, 2019. "Empirical Efficiency Measurement in Higher Education: An Overview," CEMA Working Papers: Serie Documentos de Trabajo. 708, Universidad del CEMA.
    14. repec:cte:wsrepe:ws121007 is not listed on IDEAS
    15. Joanna María Bashford-Fernández & Ana Rodríguez-Álvarez, 2019. "Wage Frontiers in Pre and Post-crisis Spain: Implications for Welfare and Inequality," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 143(2), pages 579-608, June.
    16. Alejandro U. Becerra-Ornelas & Hector M. Nuñez, 2019. "The technical efficiency of local economies in Mexico: a failure of decentralized public spending," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 62(2), pages 247-264, April.
    17. Alejandro U. Becerra Ornelas & Héctor M. Núñez, 2017. "Stochastic Frontiers and Technical Efficiency of Local Public Expenditure in Mexico," Working Papers DTE 603, CIDE, División de Economía.
    18. Markose Chekol Zewdie & Michele Moretti & Daregot Berihun Tenessa & Zemen Ayalew Ayele & Jan Nyssen & Enyew Adgo Tsegaye & Amare Sewnet Minale & Steven Van Passel, 2021. "Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach," Land, MDPI, vol. 10(3), pages 1-17, March.
    19. Sabrina Auci & Laura Castellucci & Manuela Coromaldi, 2021. "How does public spending affect technical efficiency? Some evidence from 15 European countries," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 108-130, January.
    20. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    21. Castiglione, Concetta & Infante, Davide & Zieba, Marta, 2023. "Public support for performing arts. Efficiency and productivity gains in eleven European countries," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).

    More about this item

    Keywords

    Aggregation; Closed skew normal; Cost function; Frontier; Stochastic frontier; C43; D24; Q12;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:39:y:2013:i:1:p:27-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.