IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v34y2010i1p3-13.html
   My bibliography  Save this article

Likelihood ratio tests for model selection of stochastic frontier models

Author

Listed:
  • Hung-pin Lai
  • Cliff Huang

Abstract

No abstract is available for this item.

Suggested Citation

  • Hung-pin Lai & Cliff Huang, 2010. "Likelihood ratio tests for model selection of stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 34(1), pages 3-13, August.
  • Handle: RePEc:kap:jproda:v:34:y:2010:i:1:p:3-13
    DOI: 10.1007/s11123-009-0160-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-009-0160-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-009-0160-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schmidt, Peter & Lin, Tsai-Fen, 1984. "Simple tests of alternative specifications in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 24(3), pages 349-361, March.
    2. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    3. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    4. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    5. Rafik Baccouche & Mokhtar Kouki, 2003. "Stochastic Production Frontier and Technical Inefficiency: A Sensitivity Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 22(1), pages 79-91, February.
    6. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    7. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soroush, Golnoush & Cambini, Carlo & Jamasb, Tooraj & Llorca, Manuel, 2021. "Network utilities performance and institutional quality: Evidence from the Italian electricity sector," Energy Economics, Elsevier, vol. 96(C).
    2. Pablo Argüelles & Luis Orea, 2021. "Managing power supply interruptions: a bottom-up spatial (frontier) model with an application to a Spanish electricity network," Empirical Economics, Springer, vol. 60(6), pages 2867-2896, June.
    3. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    4. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    5. Cliff Huang & Tai-Hsin Huang & Nan-Hung Liu, 2014. "A new approach to estimating the metafrontier production function based on a stochastic frontier framework," Journal of Productivity Analysis, Springer, vol. 42(3), pages 241-254, December.
    6. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    7. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    8. J. Buckell & A. Smith & R. Longo & D. Holland, 2015. "Efficiency, heterogeneity and cost function analysis: empirical evidence from pathology services in the National Health Service in England," Applied Economics, Taylor & Francis Journals, vol. 47(31), pages 3311-3331, July.
    9. Misgan Desale Nigusie, 2024. "Normal-beta exponential stochastic frontier model: Maximum simulated likelihood approach," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 23(3), pages 489-504, September.
    10. C. Spulbăr & M. Niţoi, 2014. "Determinants of bank cost efficiency in transition economies: evidence for Latin America, Central and Eastern Europe and South-East Asia," Applied Economics, Taylor & Francis Journals, vol. 46(16), pages 1940-1952, June.
    11. Nguyen, Dung Thuy Thi & Diaz-Rainey, Ivan & Roberts, Helen & Le, Minh, 2022. "The non-monotonic relationship between financial integration and cost efficiency: Evidence from East Asian commercial banks," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 418-438.
    12. Jin-Li Hu & Tzu-Pu Chang & Ray Chou, 2014. "Market conditions and the effect of diversification on mutual fund performance: should funds be more concentrative under crisis?," Journal of Productivity Analysis, Springer, vol. 41(1), pages 141-151, February.
    13. Shamsuzzoha & Makoto Tanaka, 2021. "The role of human capital on the performance of manufacturing firms in Bangladesh," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(1), pages 21-33, January.
    14. Aljar Meesters, 2014. "A note on the assumed distributions in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(2), pages 171-173, October.
    15. Sun, Lei & Chang, Tzu-Pu, 2011. "A comprehensive analysis of the effects of risk measures on bank efficiency: Evidence from emerging Asian countries," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1727-1735, July.
    16. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cliff Huang & Hung-pin Lai, 2012. "Estimation of stochastic frontier models based on multimodel inference," Journal of Productivity Analysis, Springer, vol. 38(3), pages 273-284, December.
    2. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    3. Deng, Yaguo, 2024. "A Bayesian semi-parametric approach to stochastic frontier models with inefficiency heterogeneity," DES - Working Papers. Statistics and Econometrics. WS 43837, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    5. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2016. "Efficiency and environmental factors in the US electricity transmission industry," Energy Economics, Elsevier, vol. 55(C), pages 234-246.
    6. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    7. Young Hoon Lee, 2009. "Frontier Models and their Application to the Sports Industry," Working Papers 0903, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised 2009.
    8. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    9. Antti Saastamoinen, 2015. "Heteroscedasticity Or Production Risk? A Synthetic View," Journal of Economic Surveys, Wiley Blackwell, vol. 29(3), pages 459-478, July.
    10. Saldias, Rodrigo & von Cramon-Taubadel, Stephan, 2012. "Access to credit and the determinants of technical inefficiency among specialized small farmers in Chile," DARE Discussion Papers 1211, Georg-August University of Göttingen, Department of Agricultural Economics and Rural Development (DARE).
    11. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    12. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    13. Christine Amsler & Peter Schmidt & Wen-Jen Tsay, 2015. "A post-truncation parameterization of truncated normal technical inefficiency," Journal of Productivity Analysis, Springer, vol. 44(2), pages 209-220, October.
    14. repec:cte:wsrepe:ws121007 is not listed on IDEAS
    15. Paul, Satya & Shankar, Sriram, 2018. "On estimating efficiency effects in a stochastic frontier model," European Journal of Operational Research, Elsevier, vol. 271(2), pages 769-774.
    16. Ajayi, V. & Weyman-Jones, T., 2021. "State-Level Electricity Generation Efficiency: Do Restructuring and Regulatory Institutions Matter in the US?," Cambridge Working Papers in Economics 2166, Faculty of Economics, University of Cambridge.
    17. Cheol-Keun Cho & Peter Schmidt, 2020. "The wrong skew problem in stochastic frontier models when inefficiency depends on environmental variables," Empirical Economics, Springer, vol. 58(5), pages 2031-2047, May.
    18. Ajayi, Victor & Weyman-Jones, Tom, 2021. "State-level electricity generation efficiency: Do restructuring and regulatory institutions matter in the US?," Energy Economics, Elsevier, vol. 104(C).
    19. Kim, Myungsup & Schmidt, Peter, 2008. "Valid tests of whether technical inefficiency depends on firm characteristics," Journal of Econometrics, Elsevier, vol. 144(2), pages 409-427, June.
    20. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    21. Fumitoshi Mizutani & Eri Nakamura, 2017. "How do governance factors affect inefficiency? Stochastic frontier analysis of public utility firms in Japan," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 44(3), pages 267-289, September.

    More about this item

    Keywords

    Akaike information criterion; Kullback–Leibler information criterion; Likelihood ratio test; Stochastic frontier model; Takeuchi information criterion; C12; C52; C67; D24;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C67 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Input-Output Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:34:y:2010:i:1:p:3-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.