IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v10y1998i1p85-102.html
   My bibliography  Save this article

A Mathematical Programming Approach for Measuring Technical Efficiency in a Fuzzy Environment

Author

Listed:
  • Konstantinos Triantis
  • Olivier Girod

Abstract

A three stage approach is proposed to measure technical efficiency in a fuzzy environment. This approach uses the traditional data envelopment analysis framework and then merges concepts developed in fuzzy parametric programming (Carlsson and Korhonen, 1986). In the first stage, vague input and output variables are expressed in terms of their risk-free and impossible bounds and a membership function. This membership function represents the degree to which a production scenario is plausible. In the second stage, conventional efficiency measurement models (Banker, Charnes and Cooper, 1984; Deprins, Simar and Tulkens, 1984) are re-formulated in terms of the risk-free and impossible bounds and the membership function for each of the fuzzy input and output variables. In the third stage, technical efficiency scores are computed for different values of the membership function so as to identify uniquely sensitive decision making units. The approach is illustrated in the context of a preprint and packaging manufacturing line which inserts commercial pamphlets into newspapers. Copyright Kluwer Academic Publishers 1998

Suggested Citation

  • Konstantinos Triantis & Olivier Girod, 1998. "A Mathematical Programming Approach for Measuring Technical Efficiency in a Fuzzy Environment," Journal of Productivity Analysis, Springer, vol. 10(1), pages 85-102, July.
  • Handle: RePEc:kap:jproda:v:10:y:1998:i:1:p:85-102
    DOI: 10.1023/A:1018350516517
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1018350516517
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1018350516517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Henry Tulkens, 2006. "On FDH Efficiency Analysis: Some Methodological Issues and Applications to Retail Banking, Courts and Urban Transit," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 311-342, Springer.
    3. Fried, Harold O. & Lovell, C. A. Knox & Schmidt, Shelton S. (ed.), 1993. "The Measurement of Productive Efficiency: Techniques and Applications," OUP Catalogue, Oxford University Press, number 9780195072181.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Rui & Liu, Yan-Kui, 2010. "Modeling data envelopment analysis by chance method in hybrid uncertain environments," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 922-950.
    2. Mugera, Amin W., 2013. "Measuring Technical Efficiency of Dairy Farms with Imprecise Data: A Fuzzy Data Envelopment Analysis Approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(4), pages 1-19.
    3. Aparicio, Juan & Cordero, Jose M. & Ortiz, Lidia, 2019. "Measuring efficiency in education: The influence of imprecision and variability in data on DEA estimates," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    4. Hatami-Marbini, Adel & Emrouznejad, Ali & Tavana, Madjid, 2011. "A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making," European Journal of Operational Research, Elsevier, vol. 214(3), pages 457-472, November.
    5. Jens Leth Hougaard & Pieter Jan Kerstens & Kurt Nielsen, 2019. "Benchmarking with uncertain data: a simulation study comparing alternative methods," IFRO Working Paper 2019/05, University of Copenhagen, Department of Food and Resource Economics.
    6. Waichon Lio & Baoding Liu, 2018. "Uncertain data envelopment analysis with imprecisely observed inputs and outputs," Fuzzy Optimization and Decision Making, Springer, vol. 17(3), pages 357-373, September.
    7. Kao, Chiang, 2006. "Interval efficiency measures in data envelopment analysis with imprecise data," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1087-1099, October.
    8. Konstantinos Triantis & Philippe Eeckaut, 2000. "Fuzzy Pair-wise Dominance and Implications for Technical Efficiency Performance Assessment," Journal of Productivity Analysis, Springer, vol. 13(3), pages 207-230, May.
    9. Stefanos A. Nastis & Thomas Bournaris & Dimitrios Karpouzos, 2019. "Fuzzy data envelopment analysis of organic farms," Operational Research, Springer, vol. 19(2), pages 571-584, June.
    10. Avninder Gill, 2011. "Measurement and Comparison of Productivity Performance Under Fuzzy Imprecise Data," International Journal of Business Research and Management (IJBRM), Computer Science Journals (CSC Journals), vol. 2(1), pages 19-32, April.
    11. Triantis, Konstantinos & Sarangi, Sudipta & Kuchta, Dorota, 2003. "Fuzzy pair-wise dominance and fuzzy indices: An evaluation of productive performance," European Journal of Operational Research, Elsevier, vol. 144(2), pages 412-428, January.
    12. Utsav Pandey & Sanjeet Singh, 2022. "Data envelopment analysis in hierarchical category structure with fuzzy boundaries," Annals of Operations Research, Springer, vol. 315(2), pages 1517-1549, August.
    13. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    14. Lee, Chia-Yen & Johnson, Andrew L., 2014. "Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments," European Journal of Operational Research, Elsevier, vol. 232(3), pages 537-548.
    15. Nafiseh Javaherian & Ali Hamzehee & Hossein Sayyadi Tooranloo, 2021. "A compositional approach to two-stage Data Envelopment Analysis in intuitionistic fuzzy environment," Operations Research and Decisions, Wroclaw University of Science Technology, Faculty of Management, vol. 31, pages 21-39.
    16. Nafiseh Javaherian & Ali Hamzehee & Hossein Sayyadi Tooranloo, 2021. "A compositional approach to two-stage Data Envelopment Analysis in intuitionistic fuzzy environment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 21-39.
    17. Ali Asghar Foroughi & Roohollah Abbasi Shureshjani, 2017. "Solving generalized fuzzy data envelopment analysis model: a parametric approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 889-905, December.
    18. Adel Hatami-Marbini & Per J. Agrell & Hirofumi Fukuyama & Kobra Gholami & Pegah Khoshnevis, 2017. "The role of multiplier bounds in fuzzy data envelopment analysis," Annals of Operations Research, Springer, vol. 250(1), pages 249-276, March.
    19. Florica LUBAN, 2009. "Measuring efficiency of a hierarchical organization with fuzzy DEA method," Economia. Seria Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 12(1), pages 87-97, June.
    20. Ali Ebrahimnejad & Madjid Tavana & Seyed Hadi Nasseri & Omid Gholami, 2019. "A New Method for Solving Dual DEA Problems with Fuzzy Stochastic Data," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 147-170, January.
    21. Adel Hatami-Marbini & Zahra Ghelej Beigi & Jens Leth Hougaard & Kobra Gholami, 2014. "Estimating Returns to Scale in Imprecise Data Envelopment Analysis," MSAP Working Paper Series 07_2014, University of Copenhagen, Department of Food and Resource Economics.
    22. Lovell, Knox, 2001. "Future Research Opportunities in Efficiency and Productivity Analysis," Efficiency Series Papers 2001/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Botti, Laurent & Briec, Walter & Cliquet, Gérard, 2009. "Plural forms versus franchise and company-owned systems: A DEA approach of hotel chain performance," Omega, Elsevier, vol. 37(3), pages 566-578, June.
    2. De Luca Cardillo, Dorotea & Fortuna, Tiziana, 2000. "A DEA model for the efficiency evaluation of nondominated paths on a road network," European Journal of Operational Research, Elsevier, vol. 121(3), pages 549-558, March.
    3. Andrew Worthington & Brian Dollery, 2000. "Efficiency Measurement in the Local Public Sector: Econometric and Mathematical Programming Frontier Techniques," School of Economics and Finance Discussion Papers and Working Papers Series 078, School of Economics and Finance, Queensland University of Technology.
    4. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    5. Borger, Bruno De & Ferrier, Gary D. & Kerstens, Kristiaan, 1998. "The choice of a technical efficiency measure on the free disposal hull reference technology: A comparison using US banking data," European Journal of Operational Research, Elsevier, vol. 105(3), pages 427-446, March.
    6. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, April.
    7. Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
    8. Hu, Jin-Li & Wang, Shih-Chuan & Yeh, Fang-Yu, 2006. "Total-factor water efficiency of regions in China," Resources Policy, Elsevier, vol. 31(4), pages 217-230, December.
    9. Badunenko, Oleg & Galeotti, Marzio & Hunt, Lester C., 2021. "Better to grow or better to improve? Measuring environmental efficiency in OECD countries with a Stochastic Environmental Kuznets Frontier," FEEM Working Papers 316226, Fondazione Eni Enrico Mattei (FEEM).
    10. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    11. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Lin, L.C. & Hong, C.H., 2006. "Operational performance evaluation of international major airports: An application of data envelopment analysis," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 342-351.
    13. J. Cummins & Hongmin Zi, 1998. "Comparison of Frontier Efficiency Methods: An Application to the U.S. Life Insurance Industry," Journal of Productivity Analysis, Springer, vol. 10(2), pages 131-152, October.
    14. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    15. Philippe K. Widmer & Peter Zweifel, 2008. "Public Good Provision in a Federalist Country: Tiebout Competition, Fiscal Equalization, and Incentives for Efficiency in Switzerland," SOI - Working Papers 0804, Socioeconomic Institute - University of Zurich, revised Dec 2010.
    16. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
    17. John C. Topuz & Ali F. Darrat & Roger M. Shelor, 2005. "Technical, Allocative and Scale Efficiencies of REITs: An Empirical Inquiry," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 32(9‐10), pages 1961-1994, November.
    18. Ma, Jinlong & Evans, David G. & Fuller, Robert J. & Stewart, Donald F., 2002. "Technical efficiency and productivity change of China's iron and steel industry," International Journal of Production Economics, Elsevier, vol. 76(3), pages 293-312, April.
    19. Isabel Narbón-Perpiñá & Maria Teresa Balaguer-Coll & Marko Petrović & Emili Tortosa-Ausina, 2020. "Which estimator to measure local governments’ cost efficiency? The case of Spanish municipalities," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 11(1), pages 51-82, March.
    20. Ali, Agha Iqbal & Lerme, Catherine S. & Seiford, Lawrence M., 1995. "Components of efficiency evaluation in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 80(3), pages 462-473, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:10:y:1998:i:1:p:85-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.