IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i3d10.1007_s10729-023-09642-7.html
   My bibliography  Save this article

Optimization models for patient and technician scheduling in hemodialysis centers

Author

Listed:
  • Farbod Farhadi

    (Roger Williams University)

  • Sina Ansari

    (DePaul University)

  • Francisco Jara-Moroni

    (University Diego Portales)

Abstract

Patient and technician scheduling problem in hemodialysis centers presents a unique setting in healthcare operations as (1) unlike other healthcare problems, dialysis appointments have a steady state and the treatment times are determined in advance of the appointments, and (2) once the appointments are set, technicians will have to be assigned to two types of jobs per appointment: putting on and taking off patients (connecting to and disconnecting from dialysis machines). In this study, we design a mixed-integer programming model to minimize technicians’ operating costs (regular and overtime costs) at large-scale hemodialysis centers. As this formulation proves to be computationally challenging to solve, we propose a novel reformulation of the problem as a discrete-time assignment model and prove that the two formulations are equivalent under a specific condition. We then simulate instances based on the data from our collaborating hemodialysis center to evaluate the performance of our proposed formulations. We compare our results to the current scheduling policy at the center. In our numerical analysis, we reduced the technician operating costs by 17% on average (up to 49%) compared to the current practice. We further conduct a post-optimality analysis and develop a predictive model that can estimate the number of required technicians based on the center’s attributes and patients’ input variables. Our predictive model reveals that the optimal number of technicians is strongly related to the time flexibility of patients and their dialysis times. Our findings can help clinic managers at hemodialysis centers to accurately estimate the technician requirements.

Suggested Citation

  • Farbod Farhadi & Sina Ansari & Francisco Jara-Moroni, 2023. "Optimization models for patient and technician scheduling in hemodialysis centers," Health Care Management Science, Springer, vol. 26(3), pages 558-582, September.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:3:d:10.1007_s10729-023-09642-7
    DOI: 10.1007/s10729-023-09642-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-023-09642-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-023-09642-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Allahverdi, Ali, 2015. "The third comprehensive survey on scheduling problems with setup times/costs," European Journal of Operational Research, Elsevier, vol. 246(2), pages 345-378.
    2. Wu, Lingxiao & Wang, Shuaian, 2018. "Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 26-40.
    3. Chen, Zhi-Long & Lee, Chung-Yee, 2002. "Parallel machine scheduling with a common due window," European Journal of Operational Research, Elsevier, vol. 136(3), pages 512-527, February.
    4. Mokotoff, Ethel, 2004. "An exact algorithm for the identical parallel machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 152(3), pages 758-769, February.
    5. Jun-Ho Lee & Hyun-Jung Kim, 2021. "A heuristic algorithm for identical parallel machine scheduling: splitting jobs, sequence-dependent setup times, and limited setup operators," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 992-1026, December.
    6. Zhi-Long Chen & Warren B. Powell, 1999. "Solving Parallel Machine Scheduling Problems by Column Generation," INFORMS Journal on Computing, INFORMS, vol. 11(1), pages 78-94, February.
    7. Galit B. Yom-Tov & Avishai Mandelbaum, 2014. "Erlang-R: A Time-Varying Queue with Reentrant Customers, in Support of Healthcare Staffing," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 283-299, May.
    8. Durai Sundaramoorthi & Victoria Chen & Jay Rosenberger & Seoung Kim & Deborah Buckley-Behan, 2009. "A data-integrated simulation model to evaluate nurse–patient assignments," Health Care Management Science, Springer, vol. 12(3), pages 252-268, September.
    9. Fanjul-Peyro, Luis & Perea, Federico & Ruiz, Rubén, 2017. "Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources," European Journal of Operational Research, Elsevier, vol. 260(2), pages 482-493.
    10. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    11. Linda V. Green & Sergei Savin, 2008. "Reducing Delays for Medical Appointments: A Queueing Approach," Operations Research, INFORMS, vol. 56(6), pages 1526-1538, December.
    12. Asli Ozen & Hari Balasubramanian, 2013. "The impact of case mix on timely access to appointments in a primary care group practice," Health Care Management Science, Springer, vol. 16(2), pages 101-118, June.
    13. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.
    14. Christos Zacharias & Mor Armony, 2017. "Joint Panel Sizing and Appointment Scheduling in Outpatient Care," Management Science, INFORMS, vol. 63(11), pages 3978-3997, November.
    15. Linda V. Green & Sergei Savin & Nicos Savva, 2013. "“Nursevendor Problem”: Personnel Staffing in the Presence of Endogenous Absenteeism," Management Science, INFORMS, vol. 59(10), pages 2237-2256, October.
    16. Wen-Ya Wang & Diwakar Gupta, 2014. "Nurse Absenteeism and Staffing Strategies for Hospital Inpatient Units," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 439-454, July.
    17. Francis de Véricourt & Otis B. Jennings, 2011. "Nurse Staffing in Medical Units: A Queueing Perspective," Operations Research, INFORMS, vol. 59(6), pages 1320-1331, December.
    18. Qingxia Kong & Shan Li & Nan Liu & Chung-Piaw Teo & Zhenzhen Yan, 2020. "Appointment Scheduling Under Time-Dependent Patient No-Show Behavior," Management Science, INFORMS, vol. 66(8), pages 3480-3500, August.
    19. C Mullinax & M Lawley, 2002. "Assigning patients to nurses in neonatal intensive care," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 25-35, January.
    20. Zhenyuan Liu & Jiongbing Lu & Zaisheng Liu & Guangrui Liao & Hao Howard Zhang & Junwu Dong, 2019. "Patient scheduling in hemodialysis service," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 337-362, January.
    21. Biyu He & Franklin Dexter & Alex Macario & Stefanos Zenios, 2012. "The Timing of Staffing Decisions in Hospital Operating Rooms: Incorporating Workload Heterogeneity into the Newsvendor Problem," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 99-114, January.
    22. Kaining Shao & Wenjuan Fan & Zishu Yang & Shanlin Yang & Panos M. Pardalos, 2022. "A column generation approach for patient scheduling with setup time and deteriorating treatment duration," Operational Research, Springer, vol. 22(3), pages 2555-2586, July.
    23. Bard, Jonathan F. & Purnomo, Hadi W., 2005. "Preference scheduling for nurses using column generation," European Journal of Operational Research, Elsevier, vol. 164(2), pages 510-534, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud Kamalahmadi & Kurt M. Bretthauer & Jonathan E. Helm & Alex F. Mills & Edwin C. Coe & Alisa Judy-Malcolm & Areeba Kara & Julian Pan, 2023. "Mixing It Up: Operational Impact of Hospitalist Caseload and Case-Mix," Management Science, INFORMS, vol. 69(1), pages 283-307, January.
    2. Yanıkoğlu, İhsan & Yavuz, Tonguc, 2022. "Branch-and-price approach for robust parallel machine scheduling with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 301(3), pages 875-895.
    3. Reihaneh, Mohammad & Ansari, Sina & Farhadi, Farbod, 2023. "Patient appointment scheduling at hemodialysis centers: An exact branch and price approach," European Journal of Operational Research, Elsevier, vol. 309(1), pages 35-52.
    4. Timo Gschwind & Stefan Irnich & Christian Tilk & Simon Emde, 2020. "Branch-cut-and-price for scheduling deliveries with time windows in a direct shipping network," Journal of Scheduling, Springer, vol. 23(3), pages 363-377, June.
    5. Kazim Topuz & Timothy L. Urban & Robert A. Russell & Mehmet B. Yildirim, 2024. "Decision support system for appointment scheduling and overbooking under patient no-show behavior," Annals of Operations Research, Springer, vol. 342(1), pages 845-873, November.
    6. R. K. Jha & B. S. Sahay & P. Charan, 2016. "Healthcare operations management: a structured literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(3), pages 259-279, September.
    7. Pinar Keskinocak & Nicos Savva, 2020. "A Review of the Healthcare-Management (Modeling) Literature Published in Manufacturing & Service Operations Management," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 59-72, January.
    8. Qian, Qu & Zhuang, Weifen, 2017. "Tax/subsidy and capacity decisions in a two-tier health system with welfare redistributive objective," European Journal of Operational Research, Elsevier, vol. 260(1), pages 140-151.
    9. Fernanda Campello & Armann Ingolfsson & Robert A. Shumsky, 2017. "Queueing Models of Case Managers," Management Science, INFORMS, vol. 63(3), pages 882-900, March.
    10. Prahalad Venkateshan & Joseph Szmerekovsky & George Vairaktarakis, 2020. "A cutting plane approach for the multi-machine precedence-constrained scheduling problem," Annals of Operations Research, Springer, vol. 285(1), pages 247-271, February.
    11. Kramer, Arthur & Iori, Manuel & Lacomme, Philippe, 2021. "Mathematical formulations for scheduling jobs on identical parallel machines with family setup times and total weighted completion time minimization," European Journal of Operational Research, Elsevier, vol. 289(3), pages 825-840.
    12. Fernanda Campello & Armann Ingolfsson & Robert A. Shumsky, 2018. "Queueing Models of Case Managers," Management Science, INFORMS, vol. 64(1), pages 7-26, January.
    13. Tinglong Dai & Sridhar Tayur, 2020. "OM Forum—Healthcare Operations Management: A Snapshot of Emerging Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(5), pages 869-887, September.
    14. Missaoui, Ahmed & Ruiz, Rubén, 2022. "A parameter-Less iterated greedy method for the hybrid flowshop scheduling problem with setup times and due date windows," European Journal of Operational Research, Elsevier, vol. 303(1), pages 99-113.
    15. Zander, Anne & Nickel, Stefan & Vanberkel, Peter, 2021. "Managing the intake of new patients into a physician panel over time," European Journal of Operational Research, Elsevier, vol. 294(1), pages 391-403.
    16. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    17. Dirk Briskorn & Konrad Stephan & Nils Boysen, 2022. "Minimizing the makespan on a single machine subject to modular setups," Journal of Scheduling, Springer, vol. 25(1), pages 125-137, February.
    18. Jin Xu & Natarajan Gautam, 2020. "On competitive analysis for polling systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(6), pages 404-419, September.
    19. Duraikannan Sundaramoorthi & Victoria Chen & Jay Rosenberger & Seoung Kim & Deborah Buckley-Behan, 2010. "A data-integrated simulation-based optimization for assigning nurses to patient admissions," Health Care Management Science, Springer, vol. 13(3), pages 210-221, September.
    20. Yepes-Borrero, Juan C. & Perea, Federico & Ruiz, Rubén & Villa, Fulgencia, 2021. "Bi-objective parallel machine scheduling with additional resources during setups," European Journal of Operational Research, Elsevier, vol. 292(2), pages 443-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:3:d:10.1007_s10729-023-09642-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.