IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v26y2023i2d10.1007_s10729-022-09625-0.html
   My bibliography  Save this article

Performance measurement of nonhomogeneous Hong Kong hospitals using directional distance functions

Author

Listed:
  • Shuguang Lin

    (Fujian Jiangxia University)

  • Paul Rouse

    (University of Auckland)

  • Ying-Ming Wang

    (Fuzhou University
    Fuzhou University)

  • Lin Lin

    (Fujian Jiangxia University)

  • Zhen-Quan Zheng

    (Fujian Medical University)

Abstract

Cook et al. (Oper Res 61(3):666–676, 2013) propose a DEA-based model for the performance evaluation of non-homogeneous decision making units (DMUs) based on constant returns to scale (CRS), extended by Li et al. (Health Care Manag Sci 22(2):215–228, 2019) to variable returns to scale (VRS). This paper locates these models into more general DDF models to deal with nonhomogeneous DMUs and applies these to Hong Kong hospitals. The production process of each hospital is divided into subunits which have the same inputs and outputs and hospital performance is measured using the subunits. The paper provides CRS and VRS versions of DDF models and compares them with Cook et al. (Oper Res 61(3):666–676, 2013) and Li et al. (Health Care Manag Sci 22(2):215–228, 2019). A kernel-based method is used to estimate the distributions as well as a DEA-based efficiency analysis adapted by Simar and Zelenyuk to test the distributions. Both DDF CRS and VRS versions produce results similar to Cook et al. (Oper Res 61(3):666–676, 2013) and Li et al. (Health Care Manag Sci 22(2):215–228, 2019) respectively. However, the statistical tests find differences for the different technologies assumed as would be expected. For hospital managers, the more generalised DDF models expand their range of options in terms of directional improvements and priorities as well as dealing with non-homogeneity.

Suggested Citation

  • Shuguang Lin & Paul Rouse & Ying-Ming Wang & Lin Lin & Zhen-Quan Zheng, 2023. "Performance measurement of nonhomogeneous Hong Kong hospitals using directional distance functions," Health Care Management Science, Springer, vol. 26(2), pages 330-343, June.
  • Handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09625-0
    DOI: 10.1007/s10729-022-09625-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-022-09625-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-022-09625-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    2. O'Neill, Liam & Rauner, Marion & Heidenberger, Kurt & Kraus, Markus, 2008. "A cross-national comparison and taxonomy of DEA-based hospital efficiency studies," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 158-189, September.
    3. Atkinson, Scott E. & Tsionas, Mike G., 2016. "Directional distance functions: Optimal endogenous directions," Journal of Econometrics, Elsevier, vol. 190(2), pages 301-314.
    4. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    5. R. Färe & S. Grosskopf & G. Whittaker, 2013. "Directional output distance functions: endogenous directions based on exogenous normalization constraints," Journal of Productivity Analysis, Springer, vol. 40(3), pages 267-269, December.
    6. Ludwig Kuntz & Sandra Sülz, 2011. "Modeling and notation of DEA with strong and weak disposable outputs," Health Care Management Science, Springer, vol. 14(4), pages 385-388, November.
    7. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    8. Rajiv D. Banker & Robert F. Conrad & Robert P. Strauss, 1986. "A Comparative Application of Data Envelopment Analysis and Translog Methods: An Illustrative Study of Hospital Production," Management Science, INFORMS, vol. 32(1), pages 30-44, January.
    9. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    12. Grosskopf, S. & Valdmanis, V., 1987. "Measuring hospital performance : A non-parametric approach," Journal of Health Economics, Elsevier, vol. 6(2), pages 89-107, June.
    13. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    14. Golany, B & Roll, Y, 1989. "An application procedure for DEA," Omega, Elsevier, vol. 17(3), pages 237-250.
    15. Leopold Simar & Valentin Zelenyuk, 2006. "On Testing Equality of Distributions of Technical Efficiency Scores," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 497-522.
    16. Du, Juan & Chen, Yao & Huo, Jiazhen, 2015. "DEA for non-homogenous parallel networks," Omega, Elsevier, vol. 56(C), pages 122-132.
    17. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    18. Raha Imanirad & Wade D. Cook & Joe Zhu, 2013. "Partial input to output impacts in DEA: Production considerations and resource sharing among business subunits," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(3), pages 190-207, April.
    19. Castelli, Lorenzo & Pesenti, Raffaele & Ukovich, Walter, 2001. "DEA-like models for efficiency evaluations of specialized and interdependent units," European Journal of Operational Research, Elsevier, vol. 132(2), pages 274-286, July.
    20. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    21. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    22. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    23. Haas, David A. & Murphy, Frederic H., 2003. "Compensating for non-homogeneity in decision-making units in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 144(3), pages 530-544, February.
    24. Fengyi Lin & Yung-Jr Deng & Wen-Min Lu & Qian Long Kweh, 2019. "Impulse response function analysis of the impacts of hospital accreditations on hospital efficiency," Health Care Management Science, Springer, vol. 22(3), pages 394-409, September.
    25. Wade D. Cook & Joe Zhu, 2011. "Multiple Variable Proportionality in Data Envelopment Analysis," Operations Research, INFORMS, vol. 59(4), pages 1024-1032, August.
    26. Wade D. Cook & Julie Harrison & Raha Imanirad & Paul Rouse & Joe Zhu, 2013. "Data Envelopment Analysis with Nonhomogeneous DMUs," Operations Research, INFORMS, vol. 61(3), pages 666-676, June.
    27. Yongjun Li & Xiyang Lei & Alec Morton, 2019. "Performance evaluation of nonhomogeneous hospitals: the case of Hong Kong hospitals," Health Care Management Science, Springer, vol. 22(2), pages 215-228, June.
    28. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    2. Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
    3. Deng, Zhongqi & Jiang, Nan & Pang, Ruizhi, 2021. "Factor-analysis-based directional distance function: The case of New Zealand hospitals," Omega, Elsevier, vol. 98(C).
    4. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    5. Josef Jablonský, 2019. "Data Envelopment Analysis Models in Non-Homogeneous Environment," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 67(6), pages 1535-1540.
    6. Rolf Färe & Xinju He & Sungko Li & Valentin Zelenyuk, 2019. "A Unifying Framework for Farrell Profit Efficiency Measurement," Operations Research, INFORMS, vol. 67(1), pages 183-197, January.
    7. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    8. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    9. Färe, Rolf & Fukuyama, Hirofumi & Grosskopf, Shawna & Zelenyuk, Valentin, 2016. "Cost decompositions and the efficient subset," Omega, Elsevier, vol. 62(C), pages 123-130.
    10. Layer, Kevin & Johnson, Andrew L. & Sickles, Robin C. & Ferrier, Gary D., 2020. "Direction selection in stochastic directional distance functions," European Journal of Operational Research, Elsevier, vol. 280(1), pages 351-364.
    11. Kapelko, Magdalena & Oude Lansink, Alfons & Zofío, José L., 2022. "Endogenous dynamic inefficiency and optimal resource allocation: An application to the European Dietetic Food Industry," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1444-1457.
    12. Yongjun Li & Xiyang Lei & Alec Morton, 2019. "Performance evaluation of nonhomogeneous hospitals: the case of Hong Kong hospitals," Health Care Management Science, Springer, vol. 22(2), pages 215-228, June.
    13. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    14. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    15. Malin Song & Jianlin Wang & Jiajia Zhao & Tomas Baležentis & Zhiyang Shen, 2020. "Production and safety efficiency evaluation in Chinese coal mines: accident deaths as undesirable output," Annals of Operations Research, Springer, vol. 291(1), pages 827-845, August.
    16. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    17. Xiang Ji & Jie Wu & Qingyuan Zhu & Jiasen Sun, 2019. "Using a hybrid heterogeneous DEA method to benchmark China’s sustainable urbanization: an empirical study," Annals of Operations Research, Springer, vol. 278(1), pages 281-335, July.
    18. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    19. Kounetas, Konstantinos, 2015. "Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries," Energy Policy, Elsevier, vol. 83(C), pages 277-287.
    20. Vardanyan, Michael & Valdmanis, Vivian G. & Leleu, Hervé & Ferrier, Gary D., 2022. "Estimating technology characteristics of the U.S. hospital industry using directional distance functions with optimal directions," Omega, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:26:y:2023:i:2:d:10.1007_s10729-022-09625-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.