IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v24y2021i2d10.1007_s10729-020-09538-w.html
   My bibliography  Save this article

Selecting pharmacies for COVID-19 testing to ensure access

Author

Listed:
  • Simon Risanger

    (Norwegian University of Science and Technology)

  • Bismark Singh

    (Friedrich-Alexander-Universität Erlangen-Nürnberg)

  • David Morton

    (Northwestern University)

  • Lauren Ancel Meyers

    (The University of Texas at Austin)

Abstract

Rapid diagnostic testing for COVID-19 is key to guiding social distancing orders and containing emerging disease clusters by contact tracing and isolation. However, communities throughout the US do not yet have adequate access to tests. Pharmacies are already engaged in testing, but there is capacity to greatly increase coverage. Using a facility location optimization model and willingness-to-travel estimates from US National Household Travel Survey data, we find that if COVID-19 testing became available in all US pharmacies, an estimated 94% of the US population would be willing to travel to obtain a test, if warranted. Whereas the largest chain provides high coverage in densely populated states, like Massachusetts, Rhode Island, New Jersey, and Connecticut, independent pharmacies would be required for sufficient coverage in Montana, South Dakota, and Wyoming. If only 1,000 ZIP code areas for pharmacies in the US are selected to provide testing, judicious selection, using our optimization model, provides estimated access to 29 million more people than selecting pharmacies simply based on population density.

Suggested Citation

  • Simon Risanger & Bismark Singh & David Morton & Lauren Ancel Meyers, 2021. "Selecting pharmacies for COVID-19 testing to ensure access," Health Care Management Science, Springer, vol. 24(2), pages 330-338, June.
  • Handle: RePEc:kap:hcarem:v:24:y:2021:i:2:d:10.1007_s10729-020-09538-w
    DOI: 10.1007/s10729-020-09538-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-020-09538-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-020-09538-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murali, Pavankumar & Ordóñez, Fernando & Dessouky, Maged M., 2012. "Facility location under demand uncertainty: Response to a large-scale bio-terror attack," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 78-87.
    2. Marta Serra-Garcia & Nora Szech, 2020. "Demand for COVID-19 Antibody Testing and Why It Should Be Free," Working Papers 2020-036, Human Capital and Economic Opportunity Working Group.
    3. Adrian Ramirez-Nafarrate & Joshua D. Lyon & John W. Fowler & Ozgur M. Araz, 2015. "Point-of-Dispensing Location and Capacity Optimization via a Decision Support System," Production and Operations Management, Production and Operations Management Society, vol. 24(8), pages 1311-1328, August.
    4. George J. Borjas, 2020. "Demographic Determinants of Testing Incidence and COVID-19 Infections in New York City Neighborhoods," NBER Working Papers 26952, National Bureau of Economic Research, Inc.
    5. Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
    6. Norman E. Fenton & Martin Neil & Magda Osman & Scott McLachlan, 2020. "COVID-19 infection and death rates: the need to incorporate causal explanations for the data and avoid bias in testing," Journal of Risk Research, Taylor & Francis Journals, vol. 23(7-8), pages 862-865, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Pingting Zhu & Meiyan Qian & Qiwei Wu & Xinyi Liu, 2022. "Challenges Faced in Large-Scale Nucleic Acid Testing during the Sudden Outbreak of the B.1.617.2 (Delta)," IJERPH, MDPI, vol. 19(3), pages 1-16, January.
    3. Robin L. Dillon & Vicki M. Bier & Richard Sheffield John & Abdullah Althenayyan, 2023. "Closing the Gap Between Decision Analysis and Policy Analysts Before the Next Pandemic," Decision Analysis, INFORMS, vol. 20(2), pages 109-132, June.
    4. Yashoda Devi & Sabyasachi Patra & Surya Prakash Singh, 2022. "A location-allocation model for influenza pandemic outbreaks: A case study in India," Operations Management Research, Springer, vol. 15(1), pages 487-502, June.
    5. Alec Morton & Ebru Bish & Itamar Megiddo & Weifen Zhuang & Roberto Aringhieri & Sally Brailsford & Sarang Deo & Na Geng & Julie Higle & David Hutton & Mart Janssen & Edward H Kaplan & Jianbin Li & Món, 2021. "Introduction to the special issue: Management Science in the Fight Against Covid-19," Health Care Management Science, Springer, vol. 24(2), pages 251-252, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Areej Alhothali & Budoor Alwated & Kamil Faisal & Sultanah Alshammari & Reem Alotaibi & Nusaybah Alghanmi & Omaimah Bamasag & Manal Bin Yamin, 2022. "Location-Allocation Model to Improve the Distribution of COVID-19 Vaccine Centers in Jeddah City, Saudi Arabia," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    2. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    3. Ubaid Illahi & Mohammad Shafi Mir, 2021. "Maintaining efficient logistics and supply chain management operations during and after coronavirus (COVID-19) pandemic: learning from the past experiences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11157-11178, August.
    4. Acar, Müge & Kaya, Onur, 2019. "A healthcare network design model with mobile hospitals for disaster preparedness: A case study for Istanbul earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 273-292.
    5. Taymaz, S. & Iyigun, C. & Bayindir, Z.P. & Dellaert, N.P., 2020. "A healthcare facility location problem for a multi-disease, multi-service environment under risk aversion," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    6. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    7. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    8. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    9. Ali Asgary & Svetozar Zarko Valtchev & Michael Chen & Mahdi M. Najafabadi & Jianhong Wu, 2020. "Artificial Intelligence Model of Drive-Through Vaccination Simulation," IJERPH, MDPI, vol. 18(1), pages 1-10, December.
    10. Nicholas W. Papageorge & Matthew V. Zahn & Michèle Belot & Eline Broek-Altenburg & Syngjoo Choi & Julian C. Jamison & Egon Tripodi, 2021. "Socio-demographic factors associated with self-protecting behavior during the Covid-19 pandemic," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(2), pages 691-738, April.
    11. Brandily, Paul & Brébion, Clément & Briole, Simon & Khoury, Laura, 2021. "A poorly understood disease? The impact of COVID-19 on the income gradient in mortality over the course of the pandemic," European Economic Review, Elsevier, vol. 140(C).
    12. Michael R. Miller & Robert J. Alexander & Vincent A. Arbige & Robert F. Dell & Steven R. Kremer & Brian P. McClune & Jane E. Oppenlander & Joshua P. Tomlin, 2017. "Optimal Allocation of Students to Naval Nuclear-Power Training Units," Interfaces, INFORMS, vol. 47(4), pages 320-335, August.
    13. Zeinal Hamadani, Ali & Abouei Ardakan, Mostafa & Rezvan, Taghi & Honarmandian, Mohammad Mehran, 2013. "Location-allocation problem for intra-transportation system in a big company by using meta-heuristic algorithm," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 309-317.
    14. Kılcı, Fırat & Kara, Bahar Yetiş & Bozkaya, Burçin, 2015. "Locating temporary shelter areas after an earthquake: A case for Turkey," European Journal of Operational Research, Elsevier, vol. 243(1), pages 323-332.
    15. Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021. "A literature review of the economics of COVID‐19," Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
    16. Alain, Guinet & Angel, Ruiz, 2016. "Modeling the logistics response to a bioterrorist anthrax attackAuthor-Name: Wanying, Chen," European Journal of Operational Research, Elsevier, vol. 254(2), pages 458-471.
    17. Chad Cotti & Bryan Engelhardt & Joshua Foster & Erik Nesson & Paul Niekamp, 2021. "The relationship between in‐person voting and COVID‐19: Evidence from the Wisconsin primary," Contemporary Economic Policy, Western Economic Association International, vol. 39(4), pages 760-777, October.
    18. Marta Serra-Garcia & Nora Szech, 2022. "The (In)Elasticity of Moral Ignorance," Management Science, INFORMS, vol. 68(7), pages 4815-4834, July.
    19. Aaron B. Hoskins & Hugh R. Medal, 2019. "Stochastic programming solution for placement of satellite ground stations," Annals of Operations Research, Springer, vol. 283(1), pages 267-288, December.
    20. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:24:y:2021:i:2:d:10.1007_s10729-020-09538-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.