IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v23y2020i3d10.1007_s10729-019-09495-z.html
   My bibliography  Save this article

Patient classification based on volume and case-mix in the emergency department and their association with performance

Author

Listed:
  • Farzad Zaerpour

    (The University of Winnipeg)

  • Diane P. Bischak

    (University of Calgary)

  • Mozart B. C. Menezes

    (NEOMA Business School)

  • Andrew McRae

    (University of Calgary)

  • Eddy S. Lang

    (University of Calgary)

Abstract

Predicting daily patient volume is necessary for emergency department (ED) strategic and operational decisions, such as resource planning and workforce scheduling. For these purposes, forecast accuracy requires understanding the heterogeneity among patients with respect to their characteristics and reasons for visits. To capture the heterogeneity among ED patients (case-mix), we present a patient coding and classification scheme (PCCS) based on patient demographics and diagnostic information. The proposed PCCS allows us to mathematically formalize the arrival patterns of the patient population as well as each class of patients. We can then examine the volume and case-mix of patients presenting to an ED and investigate their relationship to the ED’s quality and time-based performance metrics. We use data from five hospitals in February, July and November for the years of 2007, 2012, and 2017 in the city of Calgary, Alberta, Canada. We find meaningful arrival time patterns of the patient population as well as classes of patients in EDs. The regression results suggest that patient volume is the main predictor of time-based ED performance measures. Case-mix is, however, the key predictor of quality of care in EDs. We conclude that considering both patient volume and the mix of patients are necessary for more accurate strategic and operational planning in EDs.

Suggested Citation

  • Farzad Zaerpour & Diane P. Bischak & Mozart B. C. Menezes & Andrew McRae & Eddy S. Lang, 2020. "Patient classification based on volume and case-mix in the emergency department and their association with performance," Health Care Management Science, Springer, vol. 23(3), pages 387-400, September.
  • Handle: RePEc:kap:hcarem:v:23:y:2020:i:3:d:10.1007_s10729-019-09495-z
    DOI: 10.1007/s10729-019-09495-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-019-09495-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-019-09495-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    2. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    3. Amir Rastpour & Armann Ingolfsson & Bora Kolfal, 2020. "Modeling Yellow and Red Alert Durations for Ambulance Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1972-1991, August.
    4. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2013. "A Markovian queueing model for ambulance offload delays," European Journal of Operational Research, Elsevier, vol. 226(3), pages 602-614.
    5. Aleksandra Marcikic Horvat & Branislav Dudic & Boris Radovanov & Boban Melovic & Otilija Sedlak & Monika Davidekova, 2020. "Binary Programming Model for Rostering Ambulance Crew-Relevance for the Management and Business," Mathematics, MDPI, vol. 9(1), pages 1-13, December.
    6. Ta, Thuy Anh & Chan, Wyean & Bastin, Fabian & L’Ecuyer, Pierre, 2021. "A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 293(3), pages 966-979.
    7. Marion Rauner & Michaela Schaffhauser-Linzatti & Helmut Niessner, 2012. "Resource planning for ambulance services in mass casualty incidents: a DES-based policy model," Health Care Management Science, Springer, vol. 15(3), pages 254-269, September.
    8. Jianzhe Luo & Vidyadhar G. Kulkarni & Serhan Ziya, 2012. "Appointment Scheduling Under Patient No-Shows and Service Interruptions," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 670-684, October.
    9. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    10. Ira Gerhardt & Barry L. Nelson, 2009. "Transforming Renewal Processes for Simulation of Nonstationary Arrival Processes," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 630-640, November.
    11. Amber Kunkel & Laura McLay, 2013. "Determining minimum staffing levels during snowstorms using an integrated simulation, regression, and reliability model," Health Care Management Science, Springer, vol. 16(1), pages 14-26, March.
    12. Andrea BASTIANIN & Marzio GALEOTTI & Matteo MANERA, 2011. "Forecast evaluation in call centers: combined forecasts, flexible loss functions and economic criteria," Departmental Working Papers 2011-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    13. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2019. "Statistical and economic evaluation of time series models for forecasting arrivals at call centers," Empirical Economics, Springer, vol. 57(3), pages 923-955, September.
    14. Armann Ingolfsson & Susan Budge & Erhan Erkut, 2008. "Optimal ambulance location with random delays and travel times," Health Care Management Science, Springer, vol. 11(3), pages 262-274, September.
    15. Almehdawe, Eman & Jewkes, Beth & He, Qi-Ming, 2016. "Analysis and optimization of an ambulance offload delay and allocation problem," Omega, Elsevier, vol. 65(C), pages 148-158.
    16. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    17. McLay, Laura A. & Boone, Edward L. & Brooks, J. Paul, 2012. "Analyzing the volume and nature of emergency medical calls during severe weather events using regression methodologies," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 55-66.
    18. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    19. Abreu, Paulo & Santos, Daniel & Barbosa-Povoa, Ana, 2023. "Data-driven forecasting for operational planning of emergency medical services," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    20. Hyunjin Lee & Taesik Lee, 2021. "Demand modelling for emergency medical service system with multiple casualties cases: k-inflated mixture regression model," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 1090-1115, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:23:y:2020:i:3:d:10.1007_s10729-019-09495-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.