IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v12y2009i1p99-114.html
   My bibliography  Save this article

Effect of two-level provider capacities on the performance of open access clinics

Author

Listed:
  • Xiuli Qu
  • Jing Shi

Abstract

No abstract is available for this item.

Suggested Citation

  • Xiuli Qu & Jing Shi, 2009. "Effect of two-level provider capacities on the performance of open access clinics," Health Care Management Science, Springer, vol. 12(1), pages 99-114, March.
  • Handle: RePEc:kap:hcarem:v:12:y:2009:i:1:p:99-114
    DOI: 10.1007/s10729-008-9083-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-008-9083-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-008-9083-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    2. Qu, Xiuli & Rardin, Ronald L. & Williams, Julie Ann S. & Willis, Deanna R., 2007. "Matching daily healthcare provider capacity to demand in advanced access scheduling systems," European Journal of Operational Research, Elsevier, vol. 183(2), pages 812-826, December.
    3. Renata Kopach & Po-Ching DeLaurentis & Mark Lawley & Kumar Muthuraman & Leyla Ozsen & Ron Rardin & Hong Wan & Paul Intrevado & Xiuli Qu & Deanna Willis, 2007. "Effects of clinical characteristics on successful open access scheduling," Health Care Management Science, Springer, vol. 10(2), pages 111-124, June.
    4. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    2. Thu Nguyen & Appa Sivakumar & Stephen Graves, 2015. "A network flow approach for tactical resource planning in outpatient clinics," Health Care Management Science, Springer, vol. 18(2), pages 124-136, June.
    3. Nguyen, Thu Ba T. & Sivakumar, Appa Iyer & Graves, Stephen C., 2018. "Capacity planning with demand uncertainty for outpatient clinics," European Journal of Operational Research, Elsevier, vol. 267(1), pages 338-348.
    4. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    5. Qu, Xiuli & Peng, Yidong & Shi, Jing & LaGanga, Linda, 2015. "An MDP model for walk-in patient admission management in primary care clinics," International Journal of Production Economics, Elsevier, vol. 168(C), pages 303-320.
    6. Qu, Xiuli & Shi, Jing, 2011. "Modeling the effect of patient choice on the performance of open access scheduling," International Journal of Production Economics, Elsevier, vol. 129(2), pages 314-327, February.
    7. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Xiuli & Shi, Jing, 2011. "Modeling the effect of patient choice on the performance of open access scheduling," International Journal of Production Economics, Elsevier, vol. 129(2), pages 314-327, February.
    2. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    3. Diwakar Gupta & Lei Wang, 2008. "Revenue Management for a Primary-Care Clinic in the Presence of Patient Choice," Operations Research, INFORMS, vol. 56(3), pages 576-592, June.
    4. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    5. Izady, Navid, 2019. "An integrated approach to demand and capacity planning in outpatient clinics," European Journal of Operational Research, Elsevier, vol. 279(2), pages 645-656.
    6. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    7. Bowen Jiang & Jiafu Tang & Chongjun Yan, 2019. "A comparison of fixed and variable capacity-addition policies for outpatient capacity allocation," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 150-182, January.
    8. Eduardo Pérez, 2022. "An Appointment Planning Algorithm for Reducing Patient Check-In Waiting Times in Multispecialty Outpatient Clinics," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    9. Nguyen, Thu Ba T. & Sivakumar, Appa Iyer & Graves, Stephen C., 2018. "Capacity planning with demand uncertainty for outpatient clinics," European Journal of Operational Research, Elsevier, vol. 267(1), pages 338-348.
    10. Jiang, Yangzi & Abouee-Mehrizi, Hossein & Diao, Yuhe, 2020. "Data-driven analytics to support scheduling of multi-priority multi-class patients with wait time targets," European Journal of Operational Research, Elsevier, vol. 281(3), pages 597-611.
    11. Qu, Xiuli & Peng, Yidong & Shi, Jing & LaGanga, Linda, 2015. "An MDP model for walk-in patient admission management in primary care clinics," International Journal of Production Economics, Elsevier, vol. 168(C), pages 303-320.
    12. Hans-Jörg Schütz & Rainer Kolisch, 2013. "Capacity allocation for demand of different customer-product-combinations with cancellations, no-shows, and overbooking when there is a sequential delivery of service," Annals of Operations Research, Springer, vol. 206(1), pages 401-423, July.
    13. Huiqiao Su & Guohua Wan & Shan Wang, 2019. "Online scheduling for outpatient services with heterogeneous patients and physicians," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 123-149, January.
    14. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    15. Geng, Na & Xie, Xiaolan, 2012. "Optimizing contracted resource capacity with two advance cancelation modes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 501-512.
    16. Hari Balasubramanian & Sebastian Biehl & Longjie Dai & Ana Muriel, 2014. "Dynamic allocation of same-day requests in multi-physician primary care practices in the presence of prescheduled appointments," Health Care Management Science, Springer, vol. 17(1), pages 31-48, March.
    17. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    18. Morikawa, Katsumi & Takahashi, Katsuhiko, 2017. "Scheduling appointments for walk-ins," International Journal of Production Economics, Elsevier, vol. 190(C), pages 60-66.
    19. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    20. Sharan Srinivas & A. Ravi Ravindran, 2020. "Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers," Health Care Management Science, Springer, vol. 23(3), pages 360-386, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:12:y:2009:i:1:p:99-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.