IDEAS home Printed from https://ideas.repec.org/a/kap/fmktpm/v29y2015i2p125-147.html
   My bibliography  Save this article

Handling risk-on/risk-off dynamics with correlation regimes and correlation networks

Author

Listed:
  • Jochen Papenbrock
  • Peter Schwendner

Abstract

In this paper, we present a framework for detecting distinct correlation regimes and analyzing the emerging state dependences for a multi-asset futures portfolio from 1998 to 2013. These correlation regimes have been significantly different since the financial crisis of 2008 than they were previously; cluster tracking shows that asset classes are now less separated. We identify distinct “risk-on” and “risk-off” assets with the help of correlation networks. In addition to visualizing, we quantify these observations using suitable metrics for the clusters and correlation networks. The framework will be useful for financial risk management, portfolio construction, and asset allocation. Copyright Swiss Society for Financial Market Research 2015

Suggested Citation

  • Jochen Papenbrock & Peter Schwendner, 2015. "Handling risk-on/risk-off dynamics with correlation regimes and correlation networks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(2), pages 125-147, May.
  • Handle: RePEc:kap:fmktpm:v:29:y:2015:i:2:p:125-147
    DOI: 10.1007/s11408-015-0248-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11408-015-0248-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11408-015-0248-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Daniel J. Fenn & Mason A. Porter & Peter J. Mucha & Mark McDonald & Stacy Williams & Neil F. Johnson & Nick S. Jones, 2012. "Dynamical clustering of exchange rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1493-1520, October.
    4. Michael C. Munnix & Takashi Shimada & Rudi Schafer & Francois Leyvraz Thomas H. Seligman & Thomas Guhr & H. E. Stanley, 2012. "Identifying States of a Financial Market," Papers 1202.1623, arXiv.org.
    5. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1999. "Random matrix theory," Science & Finance (CFM) working paper archive 500052, Science & Finance, Capital Fund Management.
    6. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    7. Laurent Laloux & Pierre Cizeau & Jean-Philippe Bouchaud & Marc Potters, 1999. "Random matrix theory and financial correlations," Science & Finance (CFM) working paper archive 500053, Science & Finance, Capital Fund Management.
    8. Francesco Lisi & Marco Corazza, 2008. "Clustering Financial Data for Mutual Fund Management," Springer Books, in: Cira Perna & Marilena Sibillo (ed.), Mathematical and Statistical Methods in Insurance and Finance, pages 157-164, Springer.
    9. Cira Perna & Marilena Sibillo (ed.), 2008. "Mathematical and Statistical Methods in Insurance and Finance," Springer Books, Springer, number 978-88-470-0704-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Tao & Sun, Xiaotong & Xu, Xin & Jia, Nanfei & Xuan, Siyuan, 2024. "New evidence of interdependence in forex markets: A connection of connection analysis," International Review of Financial Analysis, Elsevier, vol. 95(PA).
    2. Ali Hirsa & Joerg Osterrieder & Branka Hadji-Misheva & Jan-Alexander Posth, 2021. "Deep reinforcement learning on a multi-asset environment for trading," Papers 2106.08437, arXiv.org.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. Deborah Miori & Mihai Cucuringu, 2022. "Returns-Driven Macro Regimes and Characteristic Lead-Lag Behaviour between Asset Classes," Papers 2209.00268, arXiv.org, revised Sep 2022.
    5. Bilal Ahmed Memon & Rabia Tahir, 2021. "Examining Network Structures and Dynamics of World Energy Companies in Stock Markets: A Complex Network Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 329-344.
    6. Heckens, Anton J. & Guhr, Thomas, 2022. "New collectivity measures for financial covariances and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    7. Packham, N. & Woebbeking, F., 2023. "Correlation scenarios and correlation stress testing," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 55-67.
    8. Andrea Di Iura, 2022. "Comparison of empirical and shrinkage correlation algorithm for clustering methods in the futures market," SN Business & Economics, Springer, vol. 2(8), pages 1-17, August.
    9. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicol'o Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Risk diversification: a study of persistence with a filtered correlation-network approach," Papers 1410.5621, arXiv.org.
    2. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    3. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.
    4. Nicolo Musmeci & Tomaso Aste & Tiziana Di Matteo, 2014. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," Papers 1406.0496, arXiv.org, revised Jan 2015.
    5. Chen, Yanhua & Li, Youwei & Pantelous, Athanasios A. & Stanley, H. Eugene, 2022. "Short-run disequilibrium adjustment and long-run equilibrium in the international stock markets: A network-based approach," International Review of Financial Analysis, Elsevier, vol. 79(C).
    6. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    7. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    8. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    9. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    10. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    11. David Matesanz Gomez & Benno Torgler & Guillermo J. Ortega, 2013. "Measuring Global Economic Interdependence: A Hierarchical Network Approach," The World Economy, Wiley Blackwell, vol. 36(12), pages 1632-1648, December.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    13. Musmeci, Nicoló & Nicosia, Vincenzo & Aste, Tomaso & Di Matteo, Tiziana & Latora, Vito, 2017. "The multiplex dependency structure of financial markets," LSE Research Online Documents on Economics 85337, London School of Economics and Political Science, LSE Library.
    14. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    15. Zhao, Longfeng & Wang, Gang-Jin & Wang, Mingang & Bao, Weiqi & Li, Wei & Stanley, H. Eugene, 2018. "Stock market as temporal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 1104-1112.
    16. Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.
    17. Gautier Marti & Philippe Very & Philippe Donnat, 2015. "Toward a generic representation of random variables for machine learning," Working Papers hal-01196883, HAL.
    18. Peter N. Posch & Daniel Ullmann & Dominik Wied, 2019. "Detecting structural changes in large portfolios," Empirical Economics, Springer, vol. 56(4), pages 1341-1357, April.
    19. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    20. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.

    More about this item

    Keywords

    Regime switching; Correlation regimes; Clustering ; Correlation networks; Risk management; Portfolio construction; Asset allocation; C14; G11; G01; D85;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G01 - Financial Economics - - General - - - Financial Crises
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:fmktpm:v:29:y:2015:i:2:p:125-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.