IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v77y2020i4d10.1007_s10640-020-00515-z.html
   My bibliography  Save this article

A Physico-Economic Model of Low Earth Orbit Management

Author

Listed:
  • Sébastien Rouillon

    (University of Bordeaux)

Abstract

We analyze the externality caused by the accumulation of space debris, focusing on the long-term equilibrium induced by a constant rate of satellite launches. We give conditions such that the long-term population of functioning satellites is an inverted-U shape function of the launch rate. We compare typical ways of managing the orbit. The maximum carrying capacity is the maximum population of satellites that the space sector can sustain in the long run. The physico-economic equilibrium occurs under open-access to the orbit. The optimal policy maximizes the present value profit of the space sector. Finally, we discuss the use of standard economic instruments (command-and-control, tax and market) to regulate space activity in order to achieve an optimal outcome. A numerical application based on a realistic calibration illustrates all results.

Suggested Citation

  • Sébastien Rouillon, 2020. "A Physico-Economic Model of Low Earth Orbit Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 695-723, December.
  • Handle: RePEc:kap:enreec:v:77:y:2020:i:4:d:10.1007_s10640-020-00515-z
    DOI: 10.1007/s10640-020-00515-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-020-00515-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-020-00515-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Klima & Daan Bloembergen & Rahul Savani & Karl Tuyls & Daniel Hennes & Dario Izzo, 2016. "Space Debris Removal: A Game Theoretic Analysis," Games, MDPI, vol. 7(3), pages 1-18, August.
    2. Rao, Akhil & Burgess, Matthew & Kaffine, Daniel, 2020. "Orbital-use fees could more than quadruple the value of the space industry," MPRA Paper 112708, University Library of Munich, Germany.
    3. Steven C. Salop, 1979. "Monopolistic Competition with Outside Goods," Bell Journal of Economics, The RAND Corporation, vol. 10(1), pages 141-156, Spring.
    4. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 9, pages 178-203, Palgrave Macmillan.
    5. Adilov, Nodir & Alexander, Peter J. & Cunningham, Brendan M., 2018. "An economic “Kessler Syndrome”: A dynamic model of earth orbit debris," Economics Letters, Elsevier, vol. 166(C), pages 79-82.
    6. Victor dos Santos Paulino & Gaël Le Hir, 2016. "Industry structure and disruptive innovations: the satellite industry," Journal of Innovation Economics, De Boeck Université, vol. 0(2), pages 37-60.
    7. H. Scott Gordon, 1954. "The Economic Theory of a Common-Property Resource: The Fishery," Journal of Political Economy, University of Chicago Press, vol. 62(2), pages 124-124.
    8. Matthew Weinzierl, 2018. "Space, the Final Economic Frontier," Journal of Economic Perspectives, American Economic Association, vol. 32(2), pages 173-192, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julien GUYOT & Sébastien ROUILLON, 2021. "Designing satellites to cope with orbital debris," Bordeaux Economics Working Papers 2021-16, Bordeaux School of Economics (BSE).
    2. Aditya Jain & Akhil Rao, 2022. "International cooperation and competition in orbit-use management," Papers 2205.03926, arXiv.org, revised Sep 2022.
    3. Adilov, Nodir & Alexander, Peter J. & Cunningham, Brendan M., 2023. "The economics of satellite deorbiting performance bonds," Economics Letters, Elsevier, vol. 228(C).
    4. Aneli Bongers & Benedetto Molinari & Sebastien Rouillon & Jose L. Torres, 2024. "The foundations of the economics of the outer space: A premier overview," Space Economics Working Papers 01-2024, Institute for Space Economics, revised Aug 2024.
    5. Bernhard, Pierre & Deschamps, Marc & Zaccour, Georges, 2023. "Large satellite constellations and space debris: Exploratory analysis of strategic management of the space commons," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1140-1157.
    6. Martin Stuermer & Maxwell Fleming & Ian Lange & Sayeh Shojaeinia, 2023. "Growth and Resources in Space: Pushing the Final Frontier?," Working Papers 2023-02, Colorado School of Mines, Division of Economics and Business.
    7. Bongers, Anelí & Torres, José L., 2023. "Orbital debris and the market for satellites," Ecological Economics, Elsevier, vol. 209(C).
    8. Aneli Bongers & Cesar Ortiz & Jose L. Torres, 2024. "DISE: A Dynamic Integrated Space Economy Model for Orbital Debris Mitigation Policy Evaluation," Space Economics Working Papers 03-2024, Institute for Space Economics, revised Sep 2024.
    9. Akhil Rao, 2024. "Close Encounters of the LEO Kind: Spillovers and Resilience in Partially-Automated Traffic Systems," Papers 2410.04599, arXiv.org.
    10. Akhil Rao & Francesca Letizia, 2022. "An integrated debris environment assessment model," Papers 2205.05205, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneli Bongers & Benedetto Molinari & Sebastien Rouillon & Jose L. Torres, 2024. "The foundations of the economics of the outer space: A premier overview," Space Economics Working Papers 01-2024, Institute for Space Economics, revised Aug 2024.
    2. Bongers, Anelí & Torres, José L., 2023. "Orbital debris and the market for satellites," Ecological Economics, Elsevier, vol. 209(C).
    3. Rao, Akhil & Burgess, Matthew & Kaffine, Daniel, 2020. "Orbital-use fees could more than quadruple the value of the space industry," MPRA Paper 112708, University Library of Munich, Germany.
    4. Akhil Rao & Giacomo Rondina, 2022. "The Economics of Orbit Use: Open Access, External Costs, and Runaway Debris Growth," Papers 2202.07442, arXiv.org, revised Aug 2023.
    5. Bernhard, Pierre & Deschamps, Marc & Zaccour, Georges, 2023. "Large satellite constellations and space debris: Exploratory analysis of strategic management of the space commons," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1140-1157.
    6. Zachary Grzelka & Jeffrey Wagner, 2019. "Managing Satellite Debris in Low-Earth Orbit: Incentivizing Ex Ante Satellite Quality and Ex Post Take-Back Programs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 319-336, September.
    7. Kotchen, Matthew J. & Salant, Stephen W., 2011. "A free lunch in the commons," Journal of Environmental Economics and Management, Elsevier, vol. 61(3), pages 245-253, May.
    8. Holland, Daniel S. & Herrera, Guillermo E., 2012. "The impact of age structure, uncertainty, and asymmetric spatial dynamics on regulatory performance in a fishery metapopulation," Ecological Economics, Elsevier, vol. 77(C), pages 207-218.
    9. McCloskey Deirdre Nansen, 2018. "The Two Movements in Economic Thought, 1700–2000: Empty Economic Boxes Revisited," Man and the Economy, De Gruyter, vol. 5(2), pages 1-20, December.
    10. Carlson, Ernest W., 1971. "The Biological and Economic Objectives of Fishery Management," File Manuscripts, United States National Marine Fisheries Service, Economic Research Division, number 233587, August.
    11. Coxhead, Ian A. & Jayasuriya, Sisira, 2003. "Trade, Liberalization, Resource Degradation and Industrial Pollution in Developing Countries: An Integrated Analysis," Staff Papers 12691, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    12. Busch, Jonah, 2008. "Gains from configuration: The transboundary protected area as a conservation tool," Ecological Economics, Elsevier, vol. 67(3), pages 394-404, October.
    13. Rauscher, Michael, 1996. "Sustainable Development and Complex Ecosystems. An Economist's View," Thuenen-Series of Applied Economic Theory 02, University of Rostock, Institute of Economics.
    14. Squires, Dale & Vestergaard, Niels, 2013. "Technical change in fisheries," Marine Policy, Elsevier, vol. 42(C), pages 286-292.
    15. Guillaume Bataille & Benteng Zou, 2024. "International Fisheries Agreements: Endogenous Exits, Shapley Values, and Moratorium Fishing Policy," AMSE Working Papers 2421, Aix-Marseille School of Economics, France.
    16. De Alessi, Michael & Sullivan, Joseph M. & Hilborn, Ray, 2014. "The legal, regulatory, and institutional evolution of fishing cooperatives in Alaska and the West Coast of the United States," Marine Policy, Elsevier, vol. 43(C), pages 217-225.
    17. B. Rudders, David & Ward, John M., 2015. "Own-price elasticity of open access supply as a long-run measure of fish stock abundance," Marine Policy, Elsevier, vol. 53(C), pages 215-226.
    18. Barkley Rosser, J. Jr., 2001. "Complex ecologic-economic dynamics and environmental policy," Ecological Economics, Elsevier, vol. 37(1), pages 23-37, April.
    19. Zhang, Yue & Zheng, Yan & Liu, Xi & Zhang, Qingling & Li, Aihua, 2016. "Dynamical analysis of a differential algebraic bio-economic model with stage-structured and stochastic fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 222-229.
    20. Bell, Frederick W. & Nash, Darrel A. & Carlson, Ernest W. & Waugh, Frederick V. & Kinoshita, Richard K. & Fullenbaum, Richard F., 1970. "The Future of the World's Fishery Resources: Forecasts of Demand, Supply and Prices to the Year 2000 with a Discussion of Implications for Public Policy," File Manuscripts, United States National Marine Fisheries Service, Economic Research Division, number 233219, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:77:y:2020:i:4:d:10.1007_s10640-020-00515-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.