IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v74y2019i1d10.1007_s10640-018-00312-9.html
   My bibliography  Save this article

Demand for Green Refueling Infrastructure

Author

Listed:
  • Tamara L. Sheldon

    (University of South Carolina)

  • J. R. DeShazo

    (University of California)

  • Richard T. Carson

    (University of California)

Abstract

Despite increasing public investment in charging infrastructure for plug-in electric vehicles (PEVs), policymakers know little about drivers’ preferences for publicly-accessible charging stations. Using data from an innovative choice experiment, we estimate demand for PEV charging stations, characterizing willingness to pay for access to types of locations as well as driver tradeoffs between refueling duration and costs. Prospective PEV drivers are willing to pay the actual variable cost of recharging at public charging stations and are willing to pay to cover significant fixed costs at select locations. Not surprisingly, many prospective drivers reveal a positive willingness to accept to wait while refueling, but this varies greatly across latent classes.

Suggested Citation

  • Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2019. "Demand for Green Refueling Infrastructure," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 131-157, September.
  • Handle: RePEc:kap:enreec:v:74:y:2019:i:1:d:10.1007_s10640-018-00312-9
    DOI: 10.1007/s10640-018-00312-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-018-00312-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-018-00312-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    2. Sheldon, Tamara L. & DeShazo, J.R., 2017. "How does the presence of HOV lanes affect plug-in electric vehicle adoption in California? A generalized propensity score approach," Journal of Environmental Economics and Management, Elsevier, vol. 85(C), pages 146-170.
    3. Golob, Thomas F & Bunch, David S & Brownstone, David, 1997. "A Vehicle Use Forecasting Model Based on Revealed and Stated Vehicle Type Choice and Utilisation Data," University of California Transportation Center, Working Papers qt2bz335vw, University of California Transportation Center.
    4. Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2017. "Electric And Plug-In Hybrid Vehicle Demand: Lessons For An Emerging Market," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 695-713, April.
    5. Milan Scasny & Milan Scasny & Iva Zverinova & Mikolaj Czajkowski, 2015. "Individual preference for the alternative fuel vehicles and their attributes in Poland," EcoMod2015 8575, EcoMod.
    6. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    7. Kurani, Kenneth & Turrentine, Thomas & Sperling, Daniel, 1996. "Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey," Institute of Transportation Studies, Working Paper Series qt0sb956wq, Institute of Transportation Studies, UC Davis.
    8. Kenneth E. Train, 1998. "Recreation Demand Models with Taste Differences over People," Land Economics, University of Wisconsin Press, vol. 74(2), pages 230-239.
    9. Riccardo Scarpa & John M. Rose, 2008. "Design efficiency for non-market valuation with choice modelling: how to measure it, what to report and why ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(3), pages 253-282, September.
    10. Hidrue, Michael K. & Parsons, George R. & Kempton, Willett & Gardner, Meryl P., 2011. "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, Elsevier, vol. 33(3), pages 686-705, September.
    11. Golob, Thomas F. & Bunch, David S. & Brownstone, David, 1997. "A Vehicle Use Forecasting Model Based on Revealed and Stated Vehicle Type Choice and Utilisation Data," University of California Transportation Center, Working Papers qt2x86k20c, University of California Transportation Center.
    12. Bunch, David S. & Bradley, Mark & Golob, Thomas F. & Kitamura, Ryuichi & Occhiuzzo, Gareth P., 1993. "Demand for clean-fuel vehicles in California: A discrete-choice stated preference pilot project," Transportation Research Part A: Policy and Practice, Elsevier, vol. 27(3), pages 237-253, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brown, Marilyn A. & Kale, Snehal & Cha, Min-Kyeong & Chapman, Oliver, 2023. "Exploring the willingness of consumers to electrify their homes," Applied Energy, Elsevier, vol. 338(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamara L. Sheldon & J. R. DeShazo & Richard T. Carson, 2017. "Electric And Plug-In Hybrid Vehicle Demand: Lessons For An Emerging Market," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 695-713, April.
    2. Loría, Luis Enrique & Watson, Verity & Kiso, Takahiko & Phimister, Euan, 2019. "Investigating users' preferences for Low Emission Buses: Experiences from Europe's largest hydrogen bus fleet," Journal of choice modelling, Elsevier, vol. 32(C), pages 1-1.
    3. Cartenì, Armando & Cascetta, Ennio & de Luca, Stefano, 2016. "A random utility model for park & carsharing services and the pure preference for electric vehicles," Transport Policy, Elsevier, vol. 48(C), pages 49-59.
    4. Gabriela D. Oliveira & Luis C. Dias, 2019. "Influence of Demographics on Consumer Preferences for Alternative Fuel Vehicles: A Review of Choice Modelling Studies and a Study in Portugal," Energies, MDPI, vol. 12(2), pages 1-33, January.
    5. Milan Scasny & Milan Scasny & Iva Zverinova & Mikolaj Czajkowski, 2015. "Individual preference for the alternative fuel vehicles and their attributes in Poland," EcoMod2015 8575, EcoMod.
    6. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    7. Axsen, Jonn & Kurani, Kenneth S., 2013. "Hybrid, plug-in hybrid, or electric—What do car buyers want?," Energy Policy, Elsevier, vol. 61(C), pages 532-543.
    8. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    9. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    10. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    11. Anders Jensen & Elisabetta Cherchi & Juan Dios Ortúzar, 2014. "A long panel survey to elicit variation in preferences and attitudes in the choice of electric vehicles," Transportation, Springer, vol. 41(5), pages 973-993, September.
    12. Dimitropoulos, Alexandros & Rietveld, Piet & van Ommeren, Jos N., 2013. "Consumer valuation of changes in driving range: A meta-analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 55(C), pages 27-45.
    13. Seiho Kim & Jaesik Lee & Chulung Lee, 2017. "Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    14. Alexandros Dimitropoulos & Piet Rietveld & Jos N. van Ommeren, 2011. "Consumer Valuation of Driving Range: A Meta-Analysis," Tinbergen Institute Discussion Papers 11-133/3, Tinbergen Institute.
    15. Cirillo, Cinzia & Liu, Yan & Maness, Michael, 2017. "A time-dependent stated preference approach to measuring vehicle type preferences and market elasticity of conventional and green vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 294-310.
    16. DeShazo, J.R. & Sheldon, Tamara L. & Carson, Richard T., 2017. "Designing policy incentives for cleaner technologies: Lessons from California's plug-in electric vehicle rebate program," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 18-43.
    17. Axsen, Jonn & Mountain, Dean C. & Jaccard, Mark, 2009. "Combining stated and revealed choice research to simulate the neighbor effect: The case of hybrid-electric vehicles," Resource and Energy Economics, Elsevier, vol. 31(3), pages 221-238, August.
    18. Nie, Yu (Marco) & Ghamami, Mehrnaz & Zockaie, Ali & Xiao, Feng, 2016. "Optimization of incentive polices for plug-in electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 84(C), pages 103-123.
    19. Thomas M. Fojcik & Heike Proff, 2014. "Accelerating market diffusion of battery electric vehicles through alternative mobility concepts," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 14(3/4), pages 347-368.
    20. Anders F. Jensen & Elisabetta Cherchi & Stefan L. Mabit & Juan de Dios Ortúzar, 2017. "Predicting the Potential Market for Electric Vehicles," Transportation Science, INFORMS, vol. 51(2), pages 427-440, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:74:y:2019:i:1:d:10.1007_s10640-018-00312-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.