IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v53y2012i3p435-454.html
   My bibliography  Save this article

Transport and CO 2 : Productivity Growth and Carbon Dioxide Emissions in the European Commercial Transport Industry

Author

Listed:
  • Lisann Krautzberger
  • Heike Wetzel

Abstract

In the last decades transport activities persistently increased in the EU27 and were strongly coupled to growth in gross domestic product. Like most production processes, they are inevitably linked with the generation of environmentally hazardous by-products, such as CO 2 emissions. This leads to the question of how to promote a sustainable transport sector that meets both environmental protection targets and economic requirements. In this context, the objective of this paper is to compare the CO 2 -sensitve productivity development of the European commercial transport industry for the period between 1995 and 2006. We calculate a Malmquist-Luenberger productivity index to investigate the effects of country-specific regulations on productivity and to identify innovative countries. Our results show a high variation in the CO 2 -sensitive productivity development and a slight productivity decrease on average. Efficiency losses indicate that the majority of the countries were not able to follow the technological improvements induced by some innovative countries. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Lisann Krautzberger & Heike Wetzel, 2012. "Transport and CO 2 : Productivity Growth and Carbon Dioxide Emissions in the European Commercial Transport Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(3), pages 435-454, November.
  • Handle: RePEc:kap:enreec:v:53:y:2012:i:3:p:435-454
    DOI: 10.1007/s10640-012-9569-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10640-012-9569-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10640-012-9569-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yoruk, BarIs K. & Zaim, Osman, 2005. "Productivity growth in OECD countries: A comparison with Malmquist indices," Journal of Comparative Economics, Elsevier, vol. 33(2), pages 401-420, June.
    2. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    3. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    4. Thirtle, Colin & Piesse, Jenifer & Lusigi, Angela & Suhariyanto, Kecuk, 2003. "Multi-factor agricultural productivity, efficiency and convergence in Botswana, 1981-1996," Journal of Development Economics, Elsevier, vol. 71(2), pages 605-624, August.
    5. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    6. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    7. Victoria Shestalova, 2003. "Sequential Malmquist Indices of Productivity Growth: An Application to OECD Industrial Activities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 211-226, April.
    8. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    9. Oulton,Nicholas & O'Mahony,Mary, 1994. "Productivity and Growth," Cambridge Books, Cambridge University Press, number 9780521453455, January.
    10. Byung M. Jeon & Robin C. Sickles, 2004. "The role of environmental factors in growth accounting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(5), pages 567-591.
    11. Karim Abadir & Gabriel Talmain, 2001. "Depreciation Rates and Capital Stocks," Manchester School, University of Manchester, vol. 69(1), pages 42-51, January.
    12. Bruce Domazlicky & William Weber, 2004. "Does Environmental Protection Lead to Slower Productivity Growth in the Chemical Industry?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 28(3), pages 301-324, July.
    13. Oh, Dong-hyun & Heshmati, Almas, 2010. "A sequential Malmquist-Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology," Energy Economics, Elsevier, vol. 32(6), pages 1345-1355, November.
    14. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    15. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    16. Diewert, W E, 1980. "Capital and the Theory of Productivity Measurement," American Economic Review, American Economic Association, vol. 70(2), pages 260-267, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2015. "Assessing environmental performance trends in the transport industry: Eco-innovation or catching-up?," Energy Economics, Elsevier, vol. 51(C), pages 570-580.
    2. Tsekouras, Kostas & Chatzistamoulou, Nikos & Kounetas, Kostas & Broadstock, David C., 2016. "Spillovers, path dependence and the productive performance of European transportation sectors in the presence of technology heterogeneity," Technological Forecasting and Social Change, Elsevier, vol. 102(C), pages 261-274.
    3. Tsekouras, Kostas & Chatzistamoulou, Nikos & Kounetas, Kostas, 2017. "Productive performance, technology heterogeneity and hierarchies: Who to compare with whom," International Journal of Production Economics, Elsevier, vol. 193(C), pages 465-478.
    4. Chung, Yeimin & Heshmati, Almas, 2013. "Measurement of Environmentally Sensitive Productivity Growth in Korean Industries," IZA Discussion Papers 7235, Institute of Labor Economics (IZA).
    5. Burski, Zbigniew & Mijalska-Szewczak, Izabela & Wasilewski, Jacek & Szczepanik, Małgorzata, 2016. "Evaluation of energy consumption of vehicles in EU Trans-European Transport Network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 120-130.
    6. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    7. Huan Zhang & Kangning Xu, 2016. "Impact of Environmental Regulation and Technical Progress on Industrial Carbon Productivity: An Approach Based on Proxy Measure," Sustainability, MDPI, vol. 8(8), pages 1-15, August.
    8. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    9. Jens J. Krüger & Moritz Tarach, 2022. "Greenhouse Gas Emission Reduction Potentials in Europe by Sector: A Bootstrap-Based Nonparametric Efficiency Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 867-898, April.
    10. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    11. Ning Zhang & Jong-Dae Kim, 2014. "Measuring sustainability by Energy Efficiency Analysis for Korean Power Companies: A Sequential Slacks-Based Efficiency Measure," Sustainability, MDPI, vol. 6(3), pages 1-13, March.
    12. Sanz-Díaz, María Teresa & Velasco-Morente, Francisco & Yñiguez, Rocío & Díaz-Calleja, Emilio, 2017. "An analysis of Spain's global and environmental efficiency from a European Union perspective," Energy Policy, Elsevier, vol. 104(C), pages 183-193.
    13. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    14. Alataş, Sedat, 2022. "Do environmental technologies help to reduce transport sector CO2 emissions? Evidence from the EU15 countries," Research in Transportation Economics, Elsevier, vol. 91(C).
    15. Michaël Aklin, 2016. "Re-exploring the Trade and Environment Nexus Through the Diffusion of Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 663-682, August.
    16. Juan Du & Yongrui Duan & Jinghua Xu, 2019. "The infeasible problem of Malmquist–Luenberger index and its application on China’s environmental total factor productivity," Annals of Operations Research, Springer, vol. 278(1), pages 235-253, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    2. Manello, Alessandro, 2017. "Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany," European Journal of Operational Research, Elsevier, vol. 262(2), pages 733-743.
    3. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2013. "On the inconsistency of the Malmquist–Luenberger index," European Journal of Operational Research, Elsevier, vol. 229(3), pages 738-742.
    4. Dubrocard, Anne & Prombo, Michel, 2012. "International comparison of Environmental performance," MPRA Paper 48072, University Library of Munich, Germany, revised 05 Jul 2013.
    5. Juan Du & Yongrui Duan & Jinghua Xu, 2019. "The infeasible problem of Malmquist–Luenberger index and its application on China’s environmental total factor productivity," Annals of Operations Research, Springer, vol. 278(1), pages 235-253, July.
    6. Oh, Dong-hyun & Heshmati, Almas, 2010. "A sequential Malmquist-Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology," Energy Economics, Elsevier, vol. 32(6), pages 1345-1355, November.
    7. Emrouznejad, Ali & Yang, Guo-liang, 2016. "A framework for measuring global Malmquist–Luenberger productivity index with CO2 emissions on Chinese manufacturing industries," Energy, Elsevier, vol. 115(P1), pages 840-856.
    8. Oh, Donghyun & Heshmati, Almas, 2009. "A Sequential Malmquist-Luenberger Productivity Index," IZA Discussion Papers 4199, Institute of Labor Economics (IZA).
    9. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    10. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    11. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    12. Rødseth, Kenneth Løvold, 2013. "Capturing the least costly way of reducing pollution: A shadow price approach," Ecological Economics, Elsevier, vol. 92(C), pages 16-24.
    13. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    14. Sinwoo Lee & Dong-Woon Noh & Dong-hyun Oh, 2018. "Characterizing the Difference between Indirect and Direct CO 2 Emissions: Evidence from Korean Manufacturing Industries, 2004–2010," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
    15. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    16. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Deshan Li & Rongwei Wu, 2018. "A Dynamic Analysis of Green Productivity Growth for Cities in Xinjiang," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    18. Vivek Ghosal & Andreas Stephan & Jan F. Weiss, 2019. "Decentralized environmental regulations and plant‐level productivity," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 998-1011, September.
    19. Falavigna, Greta & Manello, Alessandro & Pavone, Sara, 2013. "Environmental efficiency, productivity and public funds: The case of the Italian agricultural industry," Agricultural Systems, Elsevier, vol. 121(C), pages 73-80.
    20. Hyoung Seok Lee & Yongrok Choi, 2019. "Environmental Performance Evaluation of the Korean Manufacturing Industry Based on Sequential DEA," Sustainability, MDPI, vol. 11(3), pages 1-14, February.

    More about this item

    Keywords

    European transport industry; Carbon dioxide emissions; Productivity growth; Malmquist-Luenberger index; Directional distance functions;
    All these keywords.

    JEL classification:

    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:53:y:2012:i:3:p:435-454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.