IDEAS home Printed from https://ideas.repec.org/p/hhs/cesisp/0181.html
   My bibliography  Save this paper

A Sequential Malmquist-Luenberger Productivity Index

Author

Listed:
  • Oh, Donhyun

    (CESIS - Centre of Excellence for Science and Innovation Studies, Royal Institute of Technology)

  • Heshmati, Almas

    (Technology Management, Economics and Policy Program, Seoul National University)

Abstract

This study proposes an alternative methodology for measuring environmentally sensitive productivity growth. The rationale of this methodology is to consider the features of technology appropriately by excluding a spurious technical regress based on the macroeconomic perspective. In order to consider this condition and to develop an alternative index, a directional distance function and the concept of the successive sequential production possibility set are combined. With this combination, the conventional Malmquist-Luenberger productivity index is modified to give the alternative sequential environmentally sensitive productivity index. This proposed index is employed in measuring productivity growth and its decomposed components of OECD countries for the period 1970-2003. We distinguish two main empirical findings. First, even though the components of the conventional Malmquist-Luenberger productivity index and the proposed index are different, the developments of productivity are similar. Second, unlike in previous studies, the efficiency change is the main contributor to the earlier study period, whereas the effect of technical change has prevailed over time.

Suggested Citation

  • Oh, Donhyun & Heshmati, Almas, 2009. "A Sequential Malmquist-Luenberger Productivity Index," Working Paper Series in Economics and Institutions of Innovation 181, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  • Handle: RePEc:hhs:cesisp:0181
    as

    Download full text from publisher

    File URL: https://static.sys.kth.se/itm/wp/cesis/cesiswp181.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    2. Yoruk, BarIs K. & Zaim, Osman, 2005. "Productivity growth in OECD countries: A comparison with Malmquist indices," Journal of Comparative Economics, Elsevier, vol. 33(2), pages 401-420, June.
    3. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    4. F J Arcelus & P Arocena, 2005. "Productivity differences across OECD countries in the presence of environmental constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(12), pages 1352-1362, December.
    5. Victoria Shestalova, 2003. "Sequential Malmquist Indices of Productivity Growth: An Application to OECD Industrial Activities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 211-226, April.
    6. William L. Weber & Bruce Domazlicky, 2001. "Productivity Growth and Pollution in State Manufacturing," The Review of Economics and Statistics, MIT Press, vol. 83(1), pages 195-199, February.
    7. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    8. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    9. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    10. Fare, Rolf & Grosskopf, Shawna & Weber, William L., 2006. "Shadow prices and pollution costs in U.S. agriculture," Ecological Economics, Elsevier, vol. 56(1), pages 89-103, January.
    11. Yujiro Hayami, 1969. "Sources of Agricultural Productivity Gap Among Selected Countries," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 51(3), pages 564-575.
    12. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    13. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    14. Ramanathan, Ramakrishnan, 2005. "An analysis of energy consumption and carbon dioxide emissions in countries of the Middle East and North Africa," Energy, Elsevier, vol. 30(15), pages 2831-2842.
    15. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kabata, Tshepelayi, 2011. "The US Agriculture Greenhouse Emissions and Environmental Performance," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103427, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Dong-hyun & Heshmati, Almas, 2010. "A sequential Malmquist-Luenberger productivity index: Environmentally sensitive productivity growth considering the progressive nature of technology," Energy Economics, Elsevier, vol. 32(6), pages 1345-1355, November.
    2. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    3. Chung, Yeimin & Heshmati, Almas, 2013. "Measurement of Environmentally Sensitive Productivity Growth in Korean Industries," IZA Discussion Papers 7235, Institute of Labor Economics (IZA).
    4. Dubrocard, Anne & Prombo, Michel, 2012. "International comparison of Environmental performance," MPRA Paper 48072, University Library of Munich, Germany, revised 05 Jul 2013.
    5. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2013. "On the inconsistency of the Malmquist–Luenberger index," European Journal of Operational Research, Elsevier, vol. 229(3), pages 738-742.
    6. Juan Aparicio & Javier Barbero & Magdalena Kapelko & Jesus T. Pastor & Jose L. Zofio, 2016. "Environmental Productivity Change in World Air Emissions: A new Malmquist-Luenberger Index Approach," JRC Research Reports JRC104083, Joint Research Centre.
    7. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    8. Manello, Alessandro, 2017. "Productivity growth, environmental regulation and win–win opportunities: The case of chemical industry in Italy and Germany," European Journal of Operational Research, Elsevier, vol. 262(2), pages 733-743.
    9. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos, 2021. "Environmental Productivity and Convergence of European Manufacturing Industries. Are they Under Pressure?," MPRA Paper 110780, University Library of Munich, Germany.
    10. Li, Ke & Lin, Boqiang, 2015. "Measuring green productivity growth of Chinese industrial sectors during 1998–2011," China Economic Review, Elsevier, vol. 36(C), pages 279-295.
    11. Juan Du & Yongrui Duan & Jinghua Xu, 2019. "The infeasible problem of Malmquist–Luenberger index and its application on China’s environmental total factor productivity," Annals of Operations Research, Springer, vol. 278(1), pages 235-253, July.
    12. Dubrocard, Anne & Prombo, Michel, 2012. "Performance environnementale et mesure de la productivité," MPRA Paper 41456, University Library of Munich, Germany.
    13. Dong-hyun Oh, 2010. "A global Malmquist-Luenberger productivity index," Journal of Productivity Analysis, Springer, vol. 34(3), pages 183-197, December.
    14. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    15. Yongrok Choi & Dong-hyun Oh & Ning Zhang, 2015. "Environmentally sensitive productivity growth and its decompositions in China: a metafrontier Malmquist–Luenberger productivity index approach," Empirical Economics, Springer, vol. 49(3), pages 1017-1043, November.
    16. Lena, Daniela & Pasurka, Carl A. & Cucculelli, Marco, 2022. "Environmental regulation and green productivity growth: Evidence from Italian manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    17. Chiu, Ching-Ren & Liou, Je-Liang & Wu, Pei-Ing & Fang, Chen-Ling, 2012. "Decomposition of the environmental inefficiency of the meta-frontier with undesirable output," Energy Economics, Elsevier, vol. 34(5), pages 1392-1399.
    18. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.
    19. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    20. Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.

    More about this item

    Keywords

    efficiency change; environmentally sensitive; productivity growth index; directional distance function; Malmquist-Luenberger; productivity index; productivity; sequential production; possibility set; technical change;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • D57 - Microeconomics - - General Equilibrium and Disequilibrium - - - Input-Output Tables and Analysis
    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:cesisp:0181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vardan Hovsepyan (email available below). General contact details of provider: https://edirc.repec.org/data/cekthse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.