IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i4d10.1007_s10614-023-10527-8.html
   My bibliography  Save this article

Pricing Fade-in Options Under GARCH-Jump Processes

Author

Listed:
  • Xingchun Wang

    (University of International Business and Economics)

  • Han Zhang

    (Renmin University of China)

Abstract

In this paper, we investigate fade-in options under GARCH-jump processes. Specifically, we adopt NIG distributions to capture jump risk, and both market and individual jumps are considered. In the pricing model driven by GARCH-jump processes, we obtain the prices of fade-in options using the Fourier transform methods. Finally, we use the derived pricing formulae to illustrate the effects of fade-in sets and the parameters in the jump processes.

Suggested Citation

  • Xingchun Wang & Han Zhang, 2024. "Pricing Fade-in Options Under GARCH-Jump Processes," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2563-2584, October.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10527-8
    DOI: 10.1007/s10614-023-10527-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10527-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10527-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Susanne Griebsch & Uwe Wystup, 2011. "On the valuation of fader and discrete barrier options in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 11(5), pages 693-709.
    2. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    3. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    4. Jean-François Bégin & Christian Dorion & Geneviève Gauthier, 2020. "Idiosyncratic Jump Risk Matters: Evidence from Equity Returns and Options," The Review of Financial Studies, Society for Financial Studies, vol. 33(1), pages 155-211.
    5. Wang, Xingchun & Zhang, Han, 2022. "Pricing basket spread options with default risk under Heston–Nandi GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    8. Bing-Huei Lin & Mao-Wei Hung & Jr-Yan Wang & Ping-Da Wu, 2013. "A lattice model for option pricing under GARCH-jump processes," Review of Derivatives Research, Springer, vol. 16(3), pages 295-329, October.
    9. Wang, Xingchun, 2020. "Valuation of Asian options with default risk under GARCH models," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 27-40.
    10. Peter Ritchken & Rob Trevor, 1999. "Pricing Options under Generalized GARCH and Stochastic Volatility Processes," Journal of Finance, American Finance Association, vol. 54(1), pages 377-402, February.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.
    2. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    3. Wenjun Zhang & Jin E. Zhang, 2020. "GARCH Option Pricing Models and the Variance Risk Premium," JRFM, MDPI, vol. 13(3), pages 1-21, March.
    4. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    5. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    6. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    7. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    8. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    9. Wang, Xingchun & Zhang, Han, 2022. "Pricing basket spread options with default risk under Heston–Nandi GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    10. Choi, Youngsoo, 2005. "An analytical approximation to the option formula for the GARCH model," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 149-164.
    11. Song, Shiyu & Tang, Dan & Xu, Guangli & Yin, Xunbai, 2023. "An analytical GARCH valuation model for spread options with default risk," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 1-20.
    12. Xinglin Yang, 2018. "Good jump, bad jump, and option valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1097-1125, September.
    13. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    14. Xingchun Wang, 2022. "Valuing fade-in options with default risk in Heston–Nandi GARCH models," Review of Derivatives Research, Springer, vol. 25(1), pages 1-22, April.
    15. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    16. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    17. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    18. Dibooglu, Sel & Cevik, Emrah I. & Tamimi, Hussein A. Hassan Al, 2022. "Credit default risk in Islamic and conventional banks: Evidence from a GARCH option pricing model," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 396-411.
    19. Hatem Ben-Ameur & Michèle Breton & Juan-Manuel Martinez, 2009. "Dynamic Programming Approach for Valuing Options in the GARCH Model," Management Science, INFORMS, vol. 55(2), pages 252-266, February.
    20. Yow-Jen Jou & Chih-Wei Wang & Wan-Chien Chiu, 2013. "Is the realized volatility good for option pricing during the recent financial crisis?," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 171-188, January.

    More about this item

    Keywords

    GARCH-jump processes; Fade-in options; Fourier transform; Default risk;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10527-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.