Headline-Driven Classification and Local Interpretation for Market Outperformance and Low-Risk Stock Prediction
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-023-10449-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
- Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
- Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
- repec:pri:cepsud:91malkiel is not listed on IDEAS
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
- Abootaleb Shirvani & Svetlozar T. Rachev & Frank J. Fabozzi, 2019. "A Rational Finance Explanation of the Stock Predictability Puzzle," Papers 1911.02194, arXiv.org.
- Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
- Roland Rothenstein, 2018. "Quantification of market efficiency based on informational-entropy," Papers 1812.02371, arXiv.org.
- Andrea Antico & Giulio Bottazzi & Daniele Giachini, 2022. "On the evolutionary stability of the sentiment investor," LEM Papers Series 2022/09, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Pankaj Pandey & Einar Snekkenes, 2016. "Using Financial Instruments to Transfer the Information Security Risks," Future Internet, MDPI, vol. 8(2), pages 1-62, May.
- L.J. Basson & Sune Ferreira-Schenk & Zandri Dickason-Koekemoer, 2022. "Fractal Dimension Option Hedging Strategy Implementation During Turbulent Market Conditions in Developing and Developed Countries," International Journal of Economics and Financial Issues, Econjournals, vol. 12(2), pages 84-95, March.
- Marianna Brunetti & Roberta De Luca, 2023.
"Pairs trading in the index options market,"
Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
- Marianna Brunetti & Roberta De Luca, 2021. "Pairs Trading In The Index Options Market," CEIS Research Paper 512, Tor Vergata University, CEIS, revised 02 Sep 2021.
- Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
- Thomas Delcey & Francesco Sergi, 2019. "The Efficient Market Hypothesis and Rational Expectations. How Did They Meet and Live (Happily?) Ever After," Working Papers hal-02187362, HAL.
- Thomas Delcey & Francesco Sergi, 2019. "The Efficient Market Hypothesis and Rational Expectations. How Did They Meet and Live (Happily?) Ever After," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02187362, HAL.
- Sensoy, Ahmet & Aras, Guler & Hacihasanoglu, Erk, 2015. "Predictability dynamics of Islamic and conventional equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 222-248.
- Pasca Lucian, 2015. "A Critical Review of the Main Approaches on Financial Market Dynamics Modelling," Journal of Heterodox Economics, Sciendo, vol. 2(2), pages 151-167, December.
- Stéphane Hamayon & Florence Legros & Pradat Yannick, 2016. "Non gaussian returns: which impact on default options retirement plans? [Distribution non gaussienne des rendements : quel impact sur les options par défaut des plans d'épargne retraite ?]," Working Papers hal-03003588, HAL.
- Mario Daniele Amore & Mariano Mastrogiorgio, 2022. "Technological Entry, Redeployability, and Firm Value," Journal of Management Studies, Wiley Blackwell, vol. 59(7), pages 1688-1722, November.
- Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
- Stijn De Backer & Luis E. C. Rocha & Jan Ryckebusch & Koen Schoors, 2024. "On the potential of quantum walks for modeling financial return distributions," Papers 2403.19502, arXiv.org.
- Majumder, Debasish, 2013. "Towards an efficient stock market: Empirical evidence from the Indian market," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 572-587.
- David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018.
"Long Run Returns Predictability and Volatility with Moving Averages,"
Risks, MDPI, vol. 6(4), pages 1-18, September.
- Chia-Lin Chang & Jukka Ilomäki & Hannu Laurila & Michael McAleer, 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Documentos de Trabajo del ICAE 2018-25, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Chang, C-L. & Ilomäki, J. & Laurila, H. & McAleer, M.J., 2018. "Long Run Returns Predictability and Volatility with Moving Averages," Econometric Institute Research Papers EI2018-39, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
More about this item
Keywords
Machine learning; NLP; Interpretability; Financial sentiment analysis; Stock market;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10449-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.