IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i6d10.1007_s10614-023-10406-2.html
   My bibliography  Save this article

volatilityforecastingpackage: A Financial Volatility Package in Mathematica

Author

Listed:
  • Noorshanaaz Khodabaccus

    (University of Technology, Mauritius)

  • Aslam A. E. F. Saib

    (University of Technology, Mauritius)

Abstract

The relevance of financial volatility forecasting in efficient decision making regarding risk-related assets cannot be subdued. In the financial world, asset price volatility plays a pivotal role in investment decision making and portfolio setups. The prediction of these volatilities usually deal with noisy and non-stationary data bearing heteroscedastic nature. This paper introduces the volatilityforecastingpackage for financial volatility modelling, forecasting and visualization using state-of-the art algorithms. This package allows recourse to algorithms through a user friendly interface supported by the Mathematica framework, that provides easy access to models for high and low frequency data, while accessibly generating forecasts, estimating errors and generating plots. The package also allows analysis of user data and based on the results, a set of models appropriate for the data is suggested for eventual use.

Suggested Citation

  • Noorshanaaz Khodabaccus & Aslam A. E. F. Saib, 2024. "volatilityforecastingpackage: A Financial Volatility Package in Mathematica," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2307-2324, June.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:6:d:10.1007_s10614-023-10406-2
    DOI: 10.1007/s10614-023-10406-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10406-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10406-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McAleer, Michael & Jimenez-Martin, Juan-Angel & Perez-Amaral, Teodosio, 2013. "GFC-robust risk management strategies under the Basel Accord," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 97-111.
    2. repec:agr:journl:v:4(621):y:2019:i:4(621):p:35-52 is not listed on IDEAS
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Spyridon D. Vrontos & John Galakis & Ioannis D. Vrontos, 2021. "Implied volatility directional forecasting: a machine learning approach," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1687-1706, October.
    6. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    7. M. MALLIKARJUNA & R. Prabhakara RAO, 2019. "Volatility experience of major world stock markets," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(621), W), pages 35-52, Winter.
    8. Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
    9. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    10. Batra, Amit, 2004. "Stock return volatility patterns in India," Indian Council for Research on International Economic Relations, New Delhi Working Papers 124, Indian Council for Research on International Economic Relations, New Delhi, India.
    11. Wu, Xinyu & Hou, Xinmeng, 2020. "Forecasting volatility with component conditional autoregressive range model," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vipul Kumar Singh, 2013. "Effectiveness of volatility models in option pricing: evidence from recent financial upheavals," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 10(3), pages 352-375, October.
    2. Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
    3. Milton Abdul Thorlie & Lixin Song & Muhammad Amin & Xiaoguang Wang, 2015. "Modeling and forecasting of stock index volatility with APARCH models under ordered restriction," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(3), pages 329-356, August.
    4. Kambouroudis, Dimos S. & McMillan, David G., 2015. "Is there an ideal in-sample length for forecasting volatility?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 114-137.
    5. Cathy W. S. Chen & Bonny Lee, 2021. "Bayesian inference of multiple structural change models with asymmetric GARCH errors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1053-1078, September.
    6. Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    7. Gunnarsson, Elias Søvik & Isern, Håkon Ramon & Kaloudis, Aristidis & Risstad, Morten & Vigdel, Benjamin & Westgaard, Sjur, 2024. "Prediction of realized volatility and implied volatility indices using AI and machine learning: A review," International Review of Financial Analysis, Elsevier, vol. 93(C).
    8. Amit & Ruchika Bammi, 2016. "Impact of News on Indian Stock Market: A Periodic Study with Asymmetric Conditional Volatility Models," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 41(3), pages 169-180, August.
    9. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    10. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    11. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    12. B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
    13. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    14. Kanungo, Rama Prasad, 2021. "Uncertainty of M&As under asymmetric estimation," Journal of Business Research, Elsevier, vol. 122(C), pages 774-793.
    15. Výrost, Tomáš & Baumöhl, Eduard, 2009. "Asymmetric GARCH and the financial crisis: a preliminary study," MPRA Paper 27939, University Library of Munich, Germany.
    16. Ioannis A. Tampakoudis & Demetres N. Subeniotis & Ioannis G. Kroustalis, 2012. "Modelling volatility during the current financial crisis: an empirical analysis of the US and the UK stock markets," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(3/4), pages 171-194.
    17. Long H. Vo, 2017. "Estimating Financial Volatility with High-Frequency Returns," Journal of Finance and Economics Research, Geist Science, Iqra University, Faculty of Business Administration, vol. 2(2), pages 84-114, October.
    18. Köksal, Bülent, 2009. "A Comparison of Conditional Volatility Estimators for the ISE National 100 Index Returns," MPRA Paper 30510, University Library of Munich, Germany.
    19. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    20. Schindler, Felix, 2009. "Volatilitätseffekte am US-amerikanischen Häusermarkt," ZEW Discussion Papers 09-048, ZEW - Leibniz Centre for European Economic Research.

    More about this item

    Keywords

    Volatility forecasting; Volatility models; Financial econometrics;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:6:d:10.1007_s10614-023-10406-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.