IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v63y2024i1d10.1007_s10614-022-10331-w.html
   My bibliography  Save this article

Directed association network analysis on the Standard and Poor’s 500 Index

Author

Listed:
  • Zhaoyang Li

    (Central University of Finance and Economics)

  • Yuehan Yang

    (Central University of Finance and Economics)

Abstract

In this paper, we study the association between the core American listed companies by analysing the stock data of the Standard and Poor’s 500 Index. During the network analysis, we use a new correlation coefficient (Chatterjee in J Am Stat Assoc 116(536):1–21, 2020) to construct the directed association network and apply the directed spectral clustering on ratios of eigenvectors method (DSCORE) (Ji and Jin in Ann Appl Stat 10(4):1779–1812, 2016) for community detection. The obtained three communities are: “traditional” community, “intermediate” community, and “advanced” community respectively. We continue to analyse the entire directed association network and three communities by the node degree, and further study the companies of the central location of networks or associating within their own community or through the entire directed association network. Our results present a rational and particular community detection analysis of the financial market network. The microeconomic information hidden in stocks is successfully reflected in the associations between the American listed companies. The findings are also helpful to understand the United States market.

Suggested Citation

  • Zhaoyang Li & Yuehan Yang, 2024. "Directed association network analysis on the Standard and Poor’s 500 Index," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 111-127, January.
  • Handle: RePEc:kap:compec:v:63:y:2024:i:1:d:10.1007_s10614-022-10331-w
    DOI: 10.1007/s10614-022-10331-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10331-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10331-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piccardi, Carlo & Calatroni, Lisa & Bertoni, Fabio, 2010. "Communities in Italian corporate networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5247-5258.
    2. Christophe J. Godlewski & Bulat Sanditov, 2018. "Financial Institutions Network and the Certification Value of Bank Loans," Financial Management, Financial Management Association International, vol. 47(2), pages 253-283, June.
    3. Greenwood-Nimmo, Matthew & Huang, Jingong & Nguyen, Viet Hoang, 2019. "Financial sector bailouts, sovereign bailouts, and the transfer of credit risk," Journal of Financial Markets, Elsevier, vol. 42(C), pages 121-142.
    4. Brunetti, Celso & Harris, Jeffrey H. & Mankad, Shawn & Michailidis, George, 2019. "Interconnectedness in the interbank market," Journal of Financial Economics, Elsevier, vol. 133(2), pages 520-538.
    5. Rainone, Edoardo, 2020. "The network nature of over-the-counter interest rates," Journal of Financial Markets, Elsevier, vol. 47(C).
    6. Jared F. Egginton & William R. McCumber, 2019. "Executive Network Centrality and Stock Liquidity," Financial Management, Financial Management Association International, vol. 48(3), pages 849-871, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boeckelmann Lukas & Stalla-Bourdillon Arthur, 2021. "Structural Estimation of Time-Varying Spillovers: An Application to International Credit Risk Transmission," Working papers 798, Banque de France.
    2. Zhaoyang Li & Yuehan Yang, 2024. "A semi-orthogonal nonnegative matrix tri-factorization algorithm for overlapping community detection," Statistical Papers, Springer, vol. 65(6), pages 3601-3619, August.
    3. Kuzubaş, Tolga Umut & Saltoğlu, Burak & Sever, Can, 2016. "Systemic risk and heterogeneous leverage in banking networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 358-375.
    4. Kevin F. Kiernan & Vladimir Yankov & Filip Zikes, 2021. "Liquidity Provision and Co-insurance in Bank Syndicates," Finance and Economics Discussion Series 2021-060, Board of Governors of the Federal Reserve System (U.S.).
    5. Drago, Carlo, 2015. "Exploring the Community Structure of Complex Networks," MPRA Paper 81024, University Library of Munich, Germany.
    6. Qicheng Zhao & Zhouwei Wang & Yuping Song, 2024. "Systematic Research on Multi-dimensional and Multiple Correlation Contagion Networks of Extreme Risk in China’s Banking Industry," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1137-1162, August.
    7. Xiaoyu Liu & Xiaoli Chen, 2021. "Can “Concerted” Macroprudential Policies Mitigate Cross‐border Contagion of Financial Risks? Evidence from China and Its Financially Connected Economies," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 29(3), pages 26-54, May.
    8. Carlos León & Geun-Young Kim & Constanza Martínez & Daeyup Lee, 2017. "Equity markets’ clustering and the global financial crisis," Quantitative Finance, Taylor & Francis Journals, vol. 17(12), pages 1905-1922, December.
    9. Beatty, Anne & Liao, Scott & Zhang, Haiwen (Helen), 2019. "The effect of banks’ financial reporting on syndicated-loan structures," Journal of Accounting and Economics, Elsevier, vol. 67(2), pages 496-520.
    10. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    11. Bertrand Candelon & Laurent Ferrara & Marc Joëts, 2021. "Global financial interconnectedness: a non-linear assessment of the uncertainty channel," Applied Economics, Taylor & Francis Journals, vol. 53(25), pages 2865-2887, May.
    12. Fausto Bonacina & Marco D’Errico & Enrico Moretto & Silvana Stefani & Anna Torriero & Giovanni Zambruno, 2015. "A multiple network approach to corporate governance," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(4), pages 1585-1595, July.
    13. Flood, Mark D. & Lemieux, Victoria L. & Varga, Margaret & William Wong, B.L., 2016. "The application of visual analytics to financial stability monitoring," Journal of Financial Stability, Elsevier, vol. 27(C), pages 180-197.
    14. Wang, Kai & Li, Tingting & San, Ziyao & Gao, Hao, 2023. "How does corporate ESG performance affect stock liquidity? Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 80(C).
    15. De Novellis, G. & Musile Tanzi, P. & Ranalli, M.G. & Stanghellini, E., 2024. "Leveraged finance exposure in the banking system: Systemic risk and interconnectedness," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    16. Drago, Carlo & Ricciuti, Roberto, 2017. "Communities detection as a tool to assess a reform of the Italian interlocking directorship network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 91-104.
    17. Mehmet Balcilar & Zeynel Abidin Ozdemir & Huseyin Ozdemir & Gurcan Aygun & Mark E. Wohar, 2022. "Effectiveness of monetary policy under the high and low economic uncertainty states: evidence from the major Asian economies," Empirical Economics, Springer, vol. 63(4), pages 1741-1769, October.
    18. Wu, Jianshe & Li, Xiaoxiao & Jiao, Licheng & Wang, Xiaohua & Sun, Bo, 2013. "Minimum spanning trees for community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2265-2277.
    19. Ladley, Daniel & Rousseau, Peter L., 2023. "Panic and propagation in 1873: A network analytic approach," Journal of Banking & Finance, Elsevier, vol. 151(C).
    20. Xue Cui & Lu Yang, 2024. "Systemic risk and idiosyncratic networks among global systemically important banks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 58-75, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:63:y:2024:i:1:d:10.1007_s10614-022-10331-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.