IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i1d10.1007_s10614-022-10257-3.html
   My bibliography  Save this article

Quasi-Monte Carlo-Based Conditional Malliavin Method for Continuous-Time Asian Option Greeks

Author

Listed:
  • Chao Yu

    (Tsinghua University)

  • Xiaoqun Wang

    (Tsinghua University)

Abstract

Although many methods for computing the Greeks of discrete-time Asian options are proposed, few methods to calculate the Greeks of continuous-time Asian options are known. In this paper, we develop an integration by parts formula in the multi-dimensional Malliavin calculus, and apply it to obtain the Greeks formulae for continuous-time Asian options in the multi-asset situation. We combine the Malliavin method with the quasi-Monte Carlo method to calculate the Greeks in simulation. We discuss the asymptotic convergence of simulation estimates for the continuous-time Asian option Greeks obtained by Malliavin derivatives. We propose to use the conditional quasi-Monte Carlo method to smooth Malliavin Greeks, and show that the calculation of conditional expectations analytically is viable for many types of Asian options. We prove that the new estimates for Greeks have good smoothness. For binary Asian options, Asian call options and up-and-out Asian call options, for instance, our estimates are infinitely times differentiable. We take the gradient principal component analysis method as a dimension reduction technique in simulation. Numerical experiments demonstrate the large efficiency improvement of the proposed method, especially for Asian options with discontinuous payoff functions.

Suggested Citation

  • Chao Yu & Xiaoqun Wang, 2023. "Quasi-Monte Carlo-Based Conditional Malliavin Method for Continuous-Time Asian Option Greeks," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 325-360, June.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10257-3
    DOI: 10.1007/s10614-022-10257-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10257-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10257-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    2. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    3. Christian Bayer & Markus Siebenmorgen & Raul Tempone, 2018. "Smoothing the payoff for efficient computation of Basket option prices," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 491-505, March.
    4. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    5. Chaojun Zhang & Xiaoqun Wang, 2020. "Quasi-Monte Carlo-based conditional pathwise method for option Greeks," Quantitative Finance, Taylor & Francis Journals, vol. 20(1), pages 49-67, January.
    6. Ye Xiao & Xiaoqun Wang, 2019. "Enhancing Quasi-Monte Carlo Simulation by Minimizing Effective Dimension for Derivative Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 343-366, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Yu & Yuhan Cheng, 2023. "Malliavin Calculus and Its Application to Robust Optimal Investment for an Insider," Mathematics, MDPI, vol. 11(20), pages 1-38, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhijian He & Xiaoqun Wang, 2021. "An Integrated Quasi-Monte Carlo Method for Handling High Dimensional Problems with Discontinuities in Financial Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 693-718, February.
    2. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    3. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    4. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    5. Arturo Kohatsu-Higa & Miquel Montero, 2001. "An application of Malliavin Calculus to Finance," Papers cond-mat/0111563, arXiv.org.
    6. Dan Pirjol & Lingjiong Zhu, 2023. "Sensitivities of Asian options in the Black-Scholes model," Papers 2301.06460, arXiv.org.
    7. Wensheng Yang & Jingtang Ma & Zhenyu Cui, 2021. "Analysis of Markov chain approximation for Asian options and occupation-time derivatives: Greeks and convergence rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 359-412, April.
    8. Michael C. Fu, 2008. "What you should know about simulation and derivatives," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 723-736, December.
    9. Benhamou, Eric, 2000. "A generalisation of Malliavin weighted scheme for fast computation of the Greeks," LSE Research Online Documents on Economics 119105, London School of Economics and Political Science, LSE Library.
    10. Eric Benhamou, 2000. "A Generalisation of Malliavin Weighted Scheme for Fast Computation of the Greeks," FMG Discussion Papers dp350, Financial Markets Group.
    11. Montero, Miquel & Kohatsu-Higa, Arturo, 2003. "Malliavin Calculus applied to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 548-570.
    12. Paul Bilokon & Sergei Kucherenko & Casey Williams, 2022. "Quasi-Monte Carlo methods for calculating derivatives sensitivities on the GPU," Papers 2209.11337, arXiv.org.
    13. Ron Kaniel & Stathis Tompaidis & Alexander Zemlianov, 2008. "Efficient Computation of Hedging Parameters for Discretely Exercisable Options," Operations Research, INFORMS, vol. 56(4), pages 811-826, August.
    14. Wanmo Kang & Jong Mun Lee, 2019. "Unbiased Sensitivity Estimation of One-Dimensional Diffusion Processes," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 334-353, February.
    15. Christian P. Fries & Joerg Kampen, 2005. "Proxy simulation schemes using likelihood ratio weighted Monte Carlo for generic robust Monte-Carlo sensitivities and high accuracy drift approximation (with applications to the LIBOR Market Model)," Finance 0504010, University Library of Munich, Germany.
    16. Tebaldi, Claudio, 2005. "Hedging using simulation: a least squares approach," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.
    17. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    18. Mascagni Michael & Qiu Yue & Hin Lin-Yee, 2014. "High performance computing in quantitative finance: A review from the pseudo-random number generator perspective," Monte Carlo Methods and Applications, De Gruyter, vol. 20(2), pages 101-120, June.
    19. Nan Chen & Yanchu Liu, 2014. "American Option Sensitivities Estimation via a Generalized Infinitesimal Perturbation Analysis Approach," Operations Research, INFORMS, vol. 62(3), pages 616-632, June.
    20. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10257-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.