IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4378-d1264530.html
   My bibliography  Save this article

Malliavin Calculus and Its Application to Robust Optimal Investment for an Insider

Author

Listed:
  • Chao Yu

    (Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China)

  • Yuhan Cheng

    (School of Management, Shandong University, Jinan 250100, China)

Abstract

In the theory of portfolio selection, there are few methods that effectively address the combined challenge of insider information and model uncertainty, despite numerous methods proposed for each individually. This paper studies the problem of the robust optimal investment for an insider under model uncertainty. To address this, we extend the Itô formula for forward integrals by Malliavin calculus, and use it to establish an implicit anticipating stochastic differential game model for the robust optimal investment. Since traditional stochastic control theory proves inadequate for solving anticipating control problems, we introduce a new approach. First, we employ the variational method to convert the original problem into a nonanticipative stochastic differential game problem. Then we use the stochastic maximum principle to derive the Hamiltonian system governing the robust optimal investment. In cases where the insider information filtration is of the initial enlargement type, we derive the closed-form expression for the investment by using the white noise theory when the insider is ’small’. When the insider is ’large’, we articulate a quadratic backward stochastic differential equation characterization of the investment. We present the numerical result and conduct an economic analysis of the optimal strategy across various scenarios.

Suggested Citation

  • Chao Yu & Yuhan Cheng, 2023. "Malliavin Calculus and Its Application to Robust Optimal Investment for an Insider," Mathematics, MDPI, vol. 11(20), pages 1-38, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4378-:d:1264530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    2. Fujii, Masaaki & Takahashi, Akihiko, 2018. "Quadratic–exponential growth BSDEs with jumps and their Malliavin’s differentiability," Stochastic Processes and their Applications, Elsevier, vol. 128(6), pages 2083-2130.
    3. Chao Yu & Xiaoqun Wang, 2023. "Quasi-Monte Carlo-Based Conditional Malliavin Method for Continuous-Time Asian Option Greeks," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 325-360, June.
    4. Privault, Nicolas & Wei, Xiao, 2004. "A Malliavin calculus approach to sensitivity analysis in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 679-690, December.
    5. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    6. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    7. Arturo Kohatsu‐Higa & Agnès Sulem, 2006. "Utility Maximization In An Insider Influenced Market," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 153-179, January.
    8. Jiajie Wang & Qikang Ran & Qihong Chen, 2007. "L p Solutions of BSDEs with Stochastic Lipschitz Condition," International Journal of Stochastic Analysis, Hindawi, vol. 2007, pages 1-14, March.
    9. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    10. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    11. Peng, Xingchun & Chen, Fenge & Wang, Wenyuan, 2021. "Robust optimal investment and reinsurance for an insurer with inside information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 15-30.
    12. Montero, Miquel & Kohatsu-Higa, Arturo, 2003. "Malliavin Calculus applied to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 548-570.
    13. Carlos Escudero & Sandra Ranilla-Cortina, 2020. "Optimal portfolios for different anticipating integrals under insider information," Papers 2007.02316, arXiv.org, revised Jan 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    2. Len Patrick Dominic M. Garces & Yang Shen, 2024. "Robust optimal investment and consumption strategies with portfolio constraints and stochastic environment," Papers 2407.02831, arXiv.org.
    3. Gonçalo Faria & João Correia-da-Silva, 2016. "Is stochastic volatility relevant for dynamic portfolio choice under ambiguity?," The European Journal of Finance, Taylor & Francis Journals, vol. 22(7), pages 601-626, May.
    4. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    5. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    6. Wang, Haijun, 2017. "Robust asset pricing with stochastic hyperbolic discounting," Finance Research Letters, Elsevier, vol. 21(C), pages 178-185.
    7. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    8. Zhang, Jinqing & Jin, Zeyu & An, Yunbi, 2017. "Dynamic portfolio optimization with ambiguity aversion," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 95-109.
    9. He, Yong & Zhou, Xia & Chen, Peimin & Wang, Xiaoyang, 2022. "An analytical solution for the robust investment-reinsurance strategy with general utilities," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    10. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    11. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    12. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    13. Ailing Gu & Xinya He & Shumin Chen & Haixiang Yao, 2023. "Optimal Investment-Consumption and Life Insurance Strategy with Mispricing and Model Ambiguity," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-19, September.
    14. Li, Tongtong & Wang, Shibo & Yang, Jinqiang, 2021. "Robust consumption and portfolio choices with habit formation," Economic Modelling, Elsevier, vol. 98(C), pages 227-246.
    15. Horváth, Ferenc, 2017. "Essays on robust asset pricing," Other publications TiSEM e54d7b33-1f27-4b0e-9f84-f, Tilburg University, School of Economics and Management.
    16. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    17. Li, Shilin & Li, Tongtong & Yang, Jinqiang, 2022. "Optimal consumption and portfolio choices in the stochastic SIS model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    18. Claus Munk & Alexey Rubtsov, 2014. "Portfolio management with stochastic interest rates and inflation ambiguity," Annals of Finance, Springer, vol. 10(3), pages 419-455, August.
    19. Alain Bensoussan & Ka Chun Cheung & Yiqun Li & Sheung Chi Phillip Yam, 2022. "Inter‐temporal mutual‐fund management," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 825-877, July.
    20. Yulei Luo, 2017. "Robustly Strategic Consumption–Portfolio Rules with Informational Frictions," Management Science, INFORMS, vol. 63(12), pages 4158-4174, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4378-:d:1264530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.