IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v60y2022i4d10.1007_s10614-021-10190-x.html
   My bibliography  Save this article

Generalized, Partial and Canonical Correlation Coefficients

Author

Listed:
  • H. D. Vinod

Abstract

We use a simple example to show that Pearson’s correlation matrix R can underestimate the true dependence between two variables when nonlinearities are present by as much as 83%, compared to the newer and easy to compute $$R^*$$ R ∗ in Vinod (Commun Statist Simul Comput 46(6):4513–4534, 2017, https://doi.org/10.1080/03610918.2015.1122048 ). We include intuitive expository discussion of nonparametric kernel methods needed by $$R^*$$ R ∗ with graphs and examples. We illustrate how partial correlation coefficients based on R can underestimate the nonlinear effect of a confounding variable, compared to those from the newer $$R^*$$ R ∗ . This paper develops an entirely new generalization of Hotelling’s canonical correlations based on nonlinear nonparametric pairwise dependencies of $$R^*$$ R ∗ . An example illustrates how traditional methods can underestimate the joint dependence by 266%.

Suggested Citation

  • H. D. Vinod, 2022. "Generalized, Partial and Canonical Correlation Coefficients," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1479-1506, December.
  • Handle: RePEc:kap:compec:v:60:y:2022:i:4:d:10.1007_s10614-021-10190-x
    DOI: 10.1007/s10614-021-10190-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10190-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10190-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shurong Zheng & Ning-Zhong Shi & Zhengjun Zhang, 2012. "Generalized Measures of Correlation for Asymmetry, Nonlinearity, and Beyond," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1239-1252, September.
    2. Andrés García-Medina & Graciela González Farías, 2020. "Transfer entropy as a variable selection methodology of cryptocurrencies in the framework of a high dimensional predictive model," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-31, January.
    3. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    4. Vinod, H. D., 1976. "Canonical ridge and econometrics of joint production," Journal of Econometrics, Elsevier, vol. 4(2), pages 147-166, May.
    5. David E Allen & Vince Hooper, 2018. "Generalized Correlation Measures of Causality and Forecasts of the VIX Using Non-Linear Models," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hrishikesh Vinod, 2023. "Causality Estimation in Panel Data," Fordham Economics Discussion Paper Series dp2023-09er:dp2023-09, Fordham University, Department of Economics.
    2. Han Lin Shang & Kaiying Ji & Ufuk Beyaztas, 2021. "Granger causality of bivariate stationary curve time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 626-635, July.
    3. Hrishikesh D. Vinod & P. M. Rao, 2019. "Externalities from Intra-Firm Trade by U.S. Multinationals," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(4), pages 389-397, November.
    4. David E. Allen, 2022. "Cryptocurrencies, Diversification and the COVID-19 Pandemic," JRFM, MDPI, vol. 15(3), pages 1-25, February.
    5. Kobus, Martyna & Kapera, Marek & Maasoumi, Esfandiar, 2024. "Gap in many dimensions: Application to gender," Labour Economics, Elsevier, vol. 89(C).
    6. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    7. El Ghouch, Anouar & Genton, Marc G. & Bouezmarni , Taoufik, 2012. "Measuring the Discrepancy of a Parametric Model via Local Polynomial Smoothing," LIDAM Discussion Papers ISBA 2012001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Kemp, Gordon C.R. & Santos Silva, J.M.C., 2012. "Regression towards the mode," Journal of Econometrics, Elsevier, vol. 170(1), pages 92-101.
    9. Bruneel-Zupanc, Christophe Alain, 2021. "Discrete-Continuous Dynamic Choice Models: Identification and Conditional Choice Probability Estimation," TSE Working Papers 21-1185, Toulouse School of Economics (TSE).
    10. Georgios Digkas & Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis & Ali Emrouznejad, 2020. "Measuring Spatio-temporal Efficiency: An R Implementation for Time-Evolving Units," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 843-864, December.
    11. Abhijit Sharma & Alastair Bailey & Iain Fraser, 2011. "Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 73-92, February.
    12. Requillart, Vincent & Nauges, Celine & Simioni, Michel & Bontemps, Christophe, 2012. "Food Safety Regulation and Firm Productivity: Evidence from the French Food Industry," 2012 First Congress, June 4-5, 2012, Trento, Italy 124378, Italian Association of Agricultural and Applied Economics (AIEAA).
    13. Degl’Innocenti, Marta & Matousek, Roman & Sevic, Zeljko & Tzeremes, Nickolaos G., 2017. "Bank efficiency and financial centres: Does geographical location matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 46(C), pages 188-198.
    14. Chu-Ping C. Vijverberg & Wim P. M. Vijverberg, 2016. "Pregibit: a family of binary choice models," Empirical Economics, Springer, vol. 50(3), pages 901-932, May.
    15. Zhu, Rong, 2011. "NILS Working paper no 170. The impact of major--job mismatch on college graduates' early career earnings," NILS Working Papers 26072, National Institute of Labour Studies.
    16. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    17. Myśliwski, Mateusz & Rostom, May, 2022. "Value of information, search, and competition in the UK mortgage market," Bank of England working papers 967, Bank of England.
    18. George E. Halkos & Nickolaos G. Tzeremes, 2015. "Measuring Seaports' Productivity: A Malmquist Productivity Index Decomposition Approach," Journal of Transport Economics and Policy, University of Bath, vol. 49(2), pages 355-376, April.
    19. Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
    20. Bodory, Hugo & Huber, Martin, 2018. "The causalweight package for causal inference in R," FSES Working Papers 493, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:60:y:2022:i:4:d:10.1007_s10614-021-10190-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.