IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v59y2022i4d10.1007_s10614-022-10253-7.html
   My bibliography  Save this article

Optimizing Financial Engineering Time Indicator Using Bionics Computation Algorithm and Neural Network Deep Learning

Author

Listed:
  • Zeyu Wang

    (Wuhan University)

  • Yue Deng

    (Wuhan University)

Abstract

The present work aims to optimize the time index of financial engineering to improve the efficiency of financial decision-making. A Back Propagation Neural Network (BPNN) model is designed and optimized by the Ant Colony Algorithm (ACA) based on the bionic algorithm and Deep Learning (DL). After introducing the basic knowledge of neural networks and bionic algorithms, the advantages and disadvantages of the algorithms are integrated for maximal effects. Besides, ACA optimizes the weights and thresholds in the neural network in complex problems to reduce the relative error, enhance the stability and accuracy, and improve the classification speed of the BPNN model. The experimental results indicate that the classification accuracy of the ACA model is 91.3%, and the area under the receiver operating characteristic curve is 0.867. Moreover, the running time of BPNN based on ACA is 2.5 s, the error is 0.2, and the required number of iteration steps is 36 times, better than the test results of similar algorithms. These results demonstrate that the improved BPNN based on ACA has higher classification efficiency, better efficiency and smaller errors than the traditional BPNN. In terms of financial engineering decision-making, the time index of decision-making has been significantly improved, which is conducive to reducing the decision-making risk of financial institutions and has a positive effect on improving the overall operational efficiency of enterprises.

Suggested Citation

  • Zeyu Wang & Yue Deng, 2022. "Optimizing Financial Engineering Time Indicator Using Bionics Computation Algorithm and Neural Network Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1755-1772, April.
  • Handle: RePEc:kap:compec:v:59:y:2022:i:4:d:10.1007_s10614-022-10253-7
    DOI: 10.1007/s10614-022-10253-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10253-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10253-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fei Tang, 2021. "Intelligent Bionic Optimization Algorithm Based on the Growth Characteristics of Tree Branches," International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), IGI Global, vol. 15(2), pages 34-46, April.
    2. Yu, Zhuoxi & Qin, Lu & Chen, Yunjing & Parmar, Milan Deepak, 2020. "Stock price forecasting based on LLE-BP neural network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    3. Zhengwei Ma & Wenjia Hou & Dan Zhang, 2021. "A credit risk assessment model of borrowers in P2P lending based on BP neural network," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-21, August.
    4. Sun, Xiaojun & Lei, Yalin, 2021. "Research on financial early warning of mining listed companies based on BP neural network model," Resources Policy, Elsevier, vol. 73(C).
    5. J, Uthayakumar & Metawa, Noura & Shankar, K. & Lakshmanaprabu, S.K., 2020. "Financial crisis prediction model using ant colony optimization," International Journal of Information Management, Elsevier, vol. 50(C), pages 538-556.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Siyu & Hao, Yu & Wu, Haitao, 2022. "The role of outward foreign direct investment (OFDI) on green total factor energy efficiency: Does institutional quality matters? Evidence from China," Resources Policy, Elsevier, vol. 76(C).
    2. Zhiyu Lv & Xu Zhang, 2023. "Influencing Factor Analysis on Energy-Saving Refrigerator Purchases from the Supply and Demand Sides," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    3. Jin Kuang & Tse-Chen Chang & Chia-Wei Chu, 2022. "Research on Financial Early Warning Based on Combination Forecasting Model," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    4. Dinggao Liu & Zhenpeng Tang & Yi Cai, 2022. "A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    5. Hu, Jing & Zhong, Lejia & Qiao, Jingyuan, 2024. "Equity pledge and debt financing of listed companies," Finance Research Letters, Elsevier, vol. 59(C).
    6. Hongjie Yi & Ke Zhang & Kun Ma & Lijian Zhou & Futong Tang, 2022. "Prediction of Natural Rubber Customs Declaration Price Based on Wavelet Decomposition and GA-BP Neural Network Group," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    7. Rafał Balina & Marta Idasz-Balina, 2021. "Drivers of Individual Credit Risk of Retail Customers—A Case Study on the Example of the Polish Cooperative Banking Sector," Risks, MDPI, vol. 9(12), pages 1-26, December.
    8. Niu, Juanjuan & He, Jun & He, Yiqun, 2024. "Harnessing FinTech for sustainable mineral development with innovative financing strategies in China," Resources Policy, Elsevier, vol. 90(C).
    9. Zheng, Xiaolei & Nguyen, Hoang & Bui, Xuan-Nam, 2021. "Exploring the relation between production factors, ore grades, and life of mine for forecasting mining capital cost through a novel cascade forward neural network-based salp swarm optimization model," Resources Policy, Elsevier, vol. 74(C).
    10. Lei, Xiao & Chen, Xueli & Zhang, Bin, 2024. "Unleashing the spillover potential: Exploring the role of technology-seeking investment in driving green innovation of host countries," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Ren, Xiaocong & Huang, Zilong & He, Yiqun, 2024. "Financial warning for coal mining investments: Evidence from the fruit fly optimisation algorithm with backpropagation neural networks," Energy Economics, Elsevier, vol. 134(C).
    12. Yu Zhao & Huaming Du & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective," Papers 2211.14997, arXiv.org, revised May 2023.
    13. Ahmad, Munir & Wu, Yiyun, 2022. "Natural resources, technological progress, and ecological efficiency: Does financial deepening matter for G-20 economies?," Resources Policy, Elsevier, vol. 77(C).
    14. Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
    15. Ghaemi Asl, Mahdi & Adekoya, Oluwasegun Babatunde & Rashidi, Muhammad Mahdi & Ghasemi Doudkanlou, Mohammad & Dolatabadi, Ali, 2022. "Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network," Resources Policy, Elsevier, vol. 77(C).
    16. Dushmanta Kumar Padhi & Neelamadhab Padhy & Akash Kumar Bhoi & Jana Shafi & Muhammad Fazal Ijaz, 2021. "A Fusion Framework for Forecasting Financial Market Direction Using Enhanced Ensemble Models and Technical Indicators," Mathematics, MDPI, vol. 9(21), pages 1-31, October.
    17. Huang, Wenyang & Gao, Tianxiao & Hao, Yun & Wang, Xiuqing, 2023. "Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices," Energy Economics, Elsevier, vol. 127(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:59:y:2022:i:4:d:10.1007_s10614-022-10253-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.