IDEAS home Printed from https://ideas.repec.org/a/eee/ininma/v50y2020icp538-556.html
   My bibliography  Save this article

Financial crisis prediction model using ant colony optimization

Author

Listed:
  • J, Uthayakumar
  • Metawa, Noura
  • Shankar, K.
  • Lakshmanaprabu, S.K.

Abstract

Financial decisions are often based on classification models which are used to assign a set of observations into predefined groups. Different data classification models were developed to foresee the financial crisis of an organization using their historical data. One important step towards the development of accurate financial crisis prediction (FCP) model involves the selection of appropriate variables (features) which are relevant for the problems at hand. This is termed as feature selection problem which helps to improve the classification performance. This paper proposes an Ant Colony Optimization (ACO) based financial crisis prediction (FCP) model which incorporates two phases: ACO based feature selection (ACO-FS) algorithm and ACO based data classification (ACO-DC) algorithm. The proposed ACO-FCP model is validated using a set of five benchmark dataset includes both qualitative and quantitative. For feature selection design, the developed ACO-FS method is compared with three existing feature selection algorithms namely genetic algorithm (GA), Particle Swarm Optimization (PSO) algorithm and Grey Wolf Optimization (GWO) algorithm. In addition, a comparison of classification results is also made between ACO-DC and state of art methods. Experimental analysis shows that the ACO-FCP ensemble model is superior and more robust than its counterparts. In consequence, this study strongly recommends that the proposed ACO-FCP model is highly competitive than traditional and other artificial intelligence techniques.

Suggested Citation

  • J, Uthayakumar & Metawa, Noura & Shankar, K. & Lakshmanaprabu, S.K., 2020. "Financial crisis prediction model using ant colony optimization," International Journal of Information Management, Elsevier, vol. 50(C), pages 538-556.
  • Handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:538-556
    DOI: 10.1016/j.ijinfomgt.2018.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0268401218310910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijinfomgt.2018.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeyu Wang & Yue Deng, 2022. "Optimizing Financial Engineering Time Indicator Using Bionics Computation Algorithm and Neural Network Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1755-1772, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:50:y:2020:i:c:p:538-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.