IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-022-04766-5.html
   My bibliography  Save this article

Deep Learning-Based Model for Financial Distress Prediction

Author

Listed:
  • Mohamed Elhoseny

    (Mansoura University
    University of Sharjah)

  • Noura Metawa

    (University of Sharjah
    Mansoura University)

  • Gabor Sztano

    (Corvinus University of Budapest)

  • Ibrahim M. El-hasnony

    (Mansoura University)

Abstract

Predicting bankruptcies and assessing credit risk are two of the most pressing issues in finance. Therefore, financial distress prediction and credit scoring remain hot research topics in the finance sector. Earlier studies have focused on the design of statistical approaches and machine learning models to predict a company's financial distress. In this study, an adaptive whale optimization algorithm with deep learning (AWOA-DL) technique is used to create a new financial distress prediction model. The goal of the AWOA-DL approach is to determine whether a company is experiencing financial distress or not. A deep neural network (DNN) model called multilayer perceptron based predictive and AWOA-based hyperparameter tuning processes are used in the AWOA-DL method. Primarily, the DNN model receives the financial data as input and predicts financial distress. In addition, the AWOA is applied to tune the DNN model's hyperparameters, thereby raising the predictive outcome. The proposed model is applied in three stages: preprocessing, hyperparameter tuning using AWOA, and the prediction phase. A comprehensive simulation took place on four datasets, and the results pointed out the supremacy of the AWOA-DL method over other compared techniques by achieving an average accuracy of 95.8%, where the average accuracy equals 93.8%, 89.6%, 84.5%, and 78.2% for compared models.

Suggested Citation

  • Mohamed Elhoseny & Noura Metawa & Gabor Sztano & Ibrahim M. El-hasnony, 2025. "Deep Learning-Based Model for Financial Distress Prediction," Annals of Operations Research, Springer, vol. 345(2), pages 885-907, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04766-5
    DOI: 10.1007/s10479-022-04766-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04766-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04766-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-022-04766-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.