IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v59y2022i4d10.1007_s10614-021-10189-4.html
   My bibliography  Save this article

The Impact of News Sentiment Indicators on Agricultural Product Prices

Author

Listed:
  • Jia-Lang Xu

    (National Chung Hsing University)

  • Ying-Lin Hsu

    (National Chung Hsing University)

Abstract

Agricultural product prices have a great influence on the production value of a country, with significant economic impacts on farmers and consumers. This research uses weather data, international oil price data and social news to conduct sentiment analysis to predict future agricultural product price trends. The resulting data is then displayed using rolling and recursive window methods for segmentation and evaluation. The research results show that adding emotional scores and oil prices to predict agricultural product prices can effectively improve the prediction results. In terms of segmentation performance, the linear regression provides better prediction results than the quantile regression, and the recursive window method provides better prediction results than the rolling window.

Suggested Citation

  • Jia-Lang Xu & Ying-Lin Hsu, 2022. "The Impact of News Sentiment Indicators on Agricultural Product Prices," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1645-1657, April.
  • Handle: RePEc:kap:compec:v:59:y:2022:i:4:d:10.1007_s10614-021-10189-4
    DOI: 10.1007/s10614-021-10189-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10189-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10189-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lun‐Wei Ku & Hsin‐Hsi Chen, 2007. "Mining opinions from the Web: Beyond relevance retrieval," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(12), pages 1838-1850, October.
    2. Anthony Paris, 2018. "On the link between oil and agricultural commodity prices: Do biofuels matter?," International Economics, CEPII research center, issue 155, pages 48-60.
    3. Jean‐Paul Chavas & Jian Li, 2020. "A quantile autoregression analysis of price volatility in agricultural markets," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 273-289, March.
    4. Al-Natour, Sameh & Turetken, Ozgur, 2020. "A comparative assessment of sentiment analysis and star ratings for consumer reviews," International Journal of Information Management, Elsevier, vol. 54(C).
    5. Zhang, Chuanguo & Qu, Xuqin, 2015. "The effect of global oil price shocks on China's agricultural commodities," Energy Economics, Elsevier, vol. 51(C), pages 354-364.
    6. Dragan Miljkovic & Cole Goetz, 2020. "Destabilizing role of futures markets on North American hard red spring wheat spot prices," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 887-897, November.
    7. Wei Su, Chi & Wang, Xiao-Qing & Tao, Ran & Oana-Ramona, Lobonţ, 2019. "Do oil prices drive agricultural commodity prices? Further evidence in a global bio-energy context," Energy, Elsevier, vol. 172(C), pages 691-701.
    8. Shiferaw, Yegnanew A., 2019. "Time-varying correlation between agricultural commodity and energy price dynamics with Bayesian multivariate DCC-GARCH models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanusi, Olajide I. & Safi, Samir K. & Adeeko, Omotara & Tabash, Mosab I., 2022. "Forecasting agricultural commodity price using different models: a case study of widely consumed grains in Nigeria," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 8(2), June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yunpeng & Gao, Pengpeng & Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2023. "The asymmetric effects of oil price shocks on the world food prices: Fresh evidence from quantile-on-quantile regression approach," Energy, Elsevier, vol. 270(C).
    2. Khalfaoui, Rabeh & Shahzad, Umer & Ghaemi Asl, Mahdi & Ben Jabeur, Sami, 2023. "Investigating the spillovers between energy, food, and agricultural commodity markets: New insights from the quantile coherency approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 63-80.
    3. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    4. Ting-Ting Sun & Chi-Wei Su & Ran Tao & Meng Qin, 2021. "Are Agricultural Commodity Prices on a Conventional Wisdom with Inflation?," SAGE Open, , vol. 11(3), pages 21582440211, August.
    5. Khalfaoui, Rabeh & Baumöhl, Eduard & Sarwar, Suleman & Výrost, Tomáš, 2021. "Connectedness between energy and nonenergy commodity markets: Evidence from quantile coherency networks," Resources Policy, Elsevier, vol. 74(C).
    6. Raza, Syed Ali & Guesmi, Khaled & Belaid, Fateh & Shah, Nida, 2022. "Time-frequency causality and connectedness between oil price shocks and the world food prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    8. Aye, Goodness C. & Odhiambo, Nicholas M., 2021. "Oil prices and agricultural growth in South Africa: A threshold analysis," Resources Policy, Elsevier, vol. 73(C).
    9. Waseem Khan & Vishal Sharma & Saghir Ahmad Ansari, 2022. "Modeling the dynamics of oil and agricultural commodity price nexus in linear and nonlinear frameworks: A case of emerging economy," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1733-1784, August.
    10. Liu, Yunqiang & Liu, Sha & Ye, Deping & Tang, Hong & Wang, Fang, 2022. "Dynamic impact of negative public sentiment on agricultural product prices during COVID-19," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    11. Monika Roman & Aleksandra Górecka & Joanna Domagała, 2020. "The Linkages between Crude Oil and Food Prices," Energies, MDPI, vol. 13(24), pages 1-18, December.
    12. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    13. Cao, Yan & Cheng, Sheng, 2021. "Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices," Resources Policy, Elsevier, vol. 74(C).
    14. Claudiu Albulescu & Aviral Tiwari & Qiang Ji, 2020. "Copula-based local dependence between energy, agriculture and metal commodity markets," Papers 2003.04007, arXiv.org.
    15. Duc Hong Vo & Tan Ngoc Vu & Anh The Vo & Michael McAleer, 2019. "Modeling the Relationship between Crude Oil and Agricultural Commodity Prices," Energies, MDPI, vol. 12(7), pages 1-41, April.
    16. Hung, Ngo Thai, 2021. "Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak," Resources Policy, Elsevier, vol. 73(C).
    17. Wei, Yanfeng & Qiu, Feng & An, Henry & Zhang, Xindon & Li, Changhong & Guo, Xiaoying, 2024. "Exogenous oil supply shocks and global agricultural commodity prices: The role of biofuels," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 394-414.
    18. Miroslava Ivanova & Lilko Dospatliev, 2023. "Effects of Diesel Price on Changes in Agricultural Commodity Prices in Bulgaria," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    19. Cheng, Natalie Fang Ling & Hasanov, Akram Shavkatovich & Poon, Wai Ching & Bouri, Elie, 2023. "The US-China trade war and the volatility linkages between energy and agricultural commodities," Energy Economics, Elsevier, vol. 120(C).
    20. Zhang, Youwang & Li, Chogguang & Xu, Yuanyuan & Li, Jian, 2020. "An attribution analysis of soybean price volatility in China: global market connectedness or energy market transmission?," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 22(1), July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:59:y:2022:i:4:d:10.1007_s10614-021-10189-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.