A comparative assessment of sentiment analysis and star ratings for consumer reviews
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijinfomgt.2020.102132
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ransome Epie Bawack & Samuel Fosso Wamba & Kevin Daniel André Carillo & Shahriar Akter, 2022. "Artificial intelligence in E-Commerce: a bibliometric study and literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 297-338, March.
- Enrique Bigne & Carla Ruiz & Carmen Perez-Cabañero & Antonio Cuenca, 2023. "Are customer star ratings and sentiments aligned? A deep learning study of the customer service experience in tourism destinations," Service Business, Springer;Pan-Pacific Business Association, vol. 17(1), pages 281-314, March.
- Xue, Lan & Leung, Xi Y. & Ma, Shihan (David), 2022. "What makes a good “guest”: Evidence from Airbnb hosts' reviews," Annals of Tourism Research, Elsevier, vol. 95(C).
- Sambit Tripathi & Amit V. Deokar & Haya Ajjan, 2022. "Understanding the Order Effect of Online Reviews: A Text Mining Perspective," Information Systems Frontiers, Springer, vol. 24(6), pages 1971-1988, December.
- Yujia Liu & Jihui Li, 2024. "An Online Hotel Selection Method With Three-Dimensional Analysis of Reviews' Helpfulness," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 13(1), pages 1-25, January.
- Jia-Lang Xu & Ying-Lin Hsu, 2022. "The Impact of News Sentiment Indicators on Agricultural Product Prices," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1645-1657, April.
- Md Shamim Hossain & Mst Farjana Rahman, 2023. "Customer Sentiment Analysis and Prediction of Insurance Products’ Reviews Using Machine Learning Approaches," FIIB Business Review, , vol. 12(4), pages 386-402, December.
- Lu, Lin & Xu, Pei & Wang, Yen-Yao & Wang, Yu, 2023. "Measuring service quality with text analytics: Considering both importance and performance of consumer opinions on social and non-social online platforms," Journal of Business Research, Elsevier, vol. 169(C).
More about this item
Keywords
Sentiment analysis; eWOM; Consumer reviews; Machine-learning; Comparative assessment;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ininma:v:54:y:2020:i:c:s0268401219311181. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-information-management .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.