IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v59y2022i2d10.1007_s10614-021-10104-x.html
   My bibliography  Save this article

Cap and Trade Versus Carbon Tax: An Analysis Based on a CGE Model

Author

Listed:
  • Jin-Feng Zhou

    (Sun Yat-Sen University)

  • Dan Wu

    (Hainan University)

  • Wei Chen

    (Zhongke Environment Limited Company)

Abstract

Cost-effectiveness comparisons between two typical pricing policies, i.e., cap and trade and carbon tax, are rare in the literature and are tackled in this study. We define various carbon shadow prices at different administrative levels. By using a computable general equilibrium model, the cost-effectiveness of various policies is compared in terms of the estimation of carbon shadow prices. The results show that an energy cap-and-trade policy yields a close GDP-based carbon shadow price but a lower GSPV-based (gross-social-production-value-based) carbon shadow price than a proportional energy reduction policy does. Compared to a cap-and-trade policy, a carbon tax policy yields a much lower GDP-based carbon shadow price but a higher GSPV-based price. Improving the stringency of either a cap-and-trade policy or a carbon tax policy has limit impact on the industrial structure of the whole economy despite the impact on both the GDP and the GSPV are different between these two policies. The comparison of the two carbon pricing policies mainly implies that a carbon tax is more cost-effective than cap-and-trade for a carbon- and trade-intensive economy, but cap-and-trade has lower sector-level impacts than carbon tax especially when the cap restriction is loose.

Suggested Citation

  • Jin-Feng Zhou & Dan Wu & Wei Chen, 2022. "Cap and Trade Versus Carbon Tax: An Analysis Based on a CGE Model," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 853-885, February.
  • Handle: RePEc:kap:compec:v:59:y:2022:i:2:d:10.1007_s10614-021-10104-x
    DOI: 10.1007/s10614-021-10104-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10104-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10104-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sam Meng & Mahinda Siriwardana & Judith McNeill, 2013. "The Environmental and Economic Impact of the Carbon Tax in Australia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(3), pages 313-332, March.
    2. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.
    3. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    4. Lawrence H. Goulder & Andrew R. Schein, 2013. "Carbon Taxes Versus Cap And Trade: A Critical Review," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 1-28.
    5. Wissema, Wiepke & Dellink, Rob, 2007. "AGE analysis of the impact of a carbon energy tax on the Irish economy," Ecological Economics, Elsevier, vol. 61(4), pages 671-683, March.
    6. Wei Chen & Jin-Feng Zhou & Shi-Yu Li & Yao-Chu Li, 2017. "Effects of an Energy Tax (Carbon Tax) on Energy Saving and Emission Reduction in Guangdong Province-Based on a CGE Model," Sustainability, MDPI, vol. 9(5), pages 1-24, April.
    7. Orlov, Anton & Grethe, Harald, 2012. "Carbon taxation and market structure: A CGE analysis for Russia," Energy Policy, Elsevier, vol. 51(C), pages 696-707.
    8. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    9. Jia, Zhijie & Lin, Boqiang, 2020. "Rethinking the choice of carbon tax and carbon trading in China," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    10. Hannum, Christopher & Cutler, Harvey & Iverson, Terrence & Keyser, David, 2017. "Estimating the implied cost of carbon in future scenarios using a CGE model: The Case of Colorado," Energy Policy, Elsevier, vol. 102(C), pages 500-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xiaoping & Liu, Peng & Yang, Lin & Shi, Zhuangfei & Lao, Yongshuai, 2024. "Impact of three carbon emission reduction policies on carbon verification behavior: An analysis based on evolutionary game theory," Energy, Elsevier, vol. 295(C).
    2. Gao, Zhiyuan & Zhao, Ying & Li, Lianqing & Hao, Yu, 2024. "Economic effects of sustainable energy technology progress under carbon reduction targets: An analysis based on a dynamic multi-regional CGE model," Applied Energy, Elsevier, vol. 363(C).
    3. Zhang, Qishi & Li, Bo & Liu, Jing-Yu & Deng, Yizhi & Zhang, Runsen & Wu, Wenchao & Geng, Yong, 2024. "Assessing the distributional impacts of ambitious carbon pricing in China's agricultural sector," Ecological Economics, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    2. Masoud Yahoo & Jamal Othman, 2017. "Carbon and energy taxation for CO2 mitigation: a CGE model of the Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 239-262, February.
    3. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    4. Liu, Lirong & Huang, Charley Z. & Huang, Guohe & Baetz, Brian & Pittendrigh, Scott M., 2018. "How a carbon tax will affect an emission-intensive economy: A case study of the Province of Saskatchewan, Canada," Energy, Elsevier, vol. 159(C), pages 817-826.
    5. Lokuge, Nimanthika & Anders, Sven, 2022. "Carbon-Credit Systems in Agriculture: A Review of Literature," SPP Technical Papers, The School of Public Policy, University of Calgary, vol. 15(12), April.
    6. Nong, Duy & Meng, Sam & Siriwardana, Mahinda, 2017. "An assessment of a proposed ETS in Australia by using the MONASH-Green model," Energy Policy, Elsevier, vol. 108(C), pages 281-291.
    7. Paula Pereda & Andrea Lucchesi, Carolina Policarpo Garcia, Bruno Toni Palialol, 2019. "Neutral carbon tax and environmental targets in Brazil," Working Papers, Department of Economics 2019_02, University of São Paulo (FEA-USP).
    8. Yemane Wolde-Rufael & Eyob Mulat-weldemeskel, 2023. "Effectiveness of environmental taxes and environmental stringent policies on CO2 emissions: the European experience," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5211-5239, June.
    9. Jia, Zhijie & Wen, Shiyan & Sun, Zao, 2022. "Current relationship between coal consumption and the economic development and China's future carbon mitigation policies," Energy Policy, Elsevier, vol. 162(C).
    10. Zhang, Lirong & Li, Yakun & Jia, Zhijie, 2018. "Impact of carbon allowance allocation on power industry in China’s carbon trading market: Computable general equilibrium based analysis," Applied Energy, Elsevier, vol. 229(C), pages 814-827.
    11. Niu, Tong & Yao, Xilong & Shao, Shuai & Li, Ding & Wang, Wenxi, 2018. "Environmental tax shocks and carbon emissions: An estimated DSGE model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 9-17.
    12. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    13. Lin, Boqiang & Jia, Zhijie, 2019. "Impacts of carbon price level in carbon emission trading market," Applied Energy, Elsevier, vol. 239(C), pages 157-170.
    14. Edward Olale & Emmanuel K. Yiridoe & Thomas O. Ochuodho & Van Lantz, 2019. "The Effect of Carbon Tax on Farm Income: Evidence from a Canadian Province," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 605-623, October.
    15. Wei Chen & Jin-Feng Zhou & Shi-Yu Li & Yao-Chu Li, 2017. "Effects of an Energy Tax (Carbon Tax) on Energy Saving and Emission Reduction in Guangdong Province-Based on a CGE Model," Sustainability, MDPI, vol. 9(5), pages 1-24, April.
    16. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    17. Muhammad Farhan Bashir & Benjiang MA & Muhammad Shahbaz & Zhilun Jiao, 2020. "The nexus between environmental tax and carbon emissions with the roles of environmental technology and financial development," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    18. Jin-Feng Zhou & Juan Wu & Wei Chen & Dan Wu, 2022. "Carbon Emission Reduction Cost Assessment Using Multiregional Computable General Equilibrium Model: Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 14(17), pages 1-26, August.
    19. Melike Bildirici & Yasemin Asu Çırpıcı & Özgür Ömer Ersin, 2023. "Effects of Technology, Energy, Monetary, and Fiscal Policies on the Relationship between Renewable and Fossil Fuel Energies and Environmental Pollution: Novel NBARDL and Causality Analyses," Sustainability, MDPI, vol. 15(20), pages 1-27, October.
    20. Brown, Marilyn A. & Li, Yufei & Soni, Anmol, 2020. "Are all jobs created equal? Regional employment impacts of a U.S. carbon tax," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:59:y:2022:i:2:d:10.1007_s10614-021-10104-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.