IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v58y2021i3d10.1007_s10614-020-10052-y.html
   My bibliography  Save this article

The Valuation of Weather Derivatives Using One Sided Crank–Nicolson Schemes

Author

Listed:
  • Peng Li

    (North China University of Water Resources and Electric Power)

Abstract

This paper prices weather derivatives of two typical processes: the Ornstein–Uhlenbeck process and the Ornstein–Uhlenbeck process with jump diffusions. Efficient one sided Crank–Nicolson schemes are developed to solve the convection dominated partial differential and integral-differential equation corresponding to the two processes, respectively. For second order convergence, the one sided Crank–Nicolson schemes may utilize piecewise cubic interpolations to approximate the jump conditions in degree days direction. The unconditional stability is then obtained through the local von Neumann analysis. As extensive numerical experiments shown, the schemes are highly efficient and accurate, and can serve as competitive and practical pricing instruments in weather derivative markets.

Suggested Citation

  • Peng Li, 2021. "The Valuation of Weather Derivatives Using One Sided Crank–Nicolson Schemes," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 825-847, October.
  • Handle: RePEc:kap:compec:v:58:y:2021:i:3:d:10.1007_s10614-020-10052-y
    DOI: 10.1007/s10614-020-10052-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-020-10052-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-020-10052-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    2. Guiyuan Ma & Song-Ping Zhu, 2019. "Optimal investment and consumption under a continuous-time cointegration model with exponential utility," Quantitative Finance, Taylor & Francis Journals, vol. 19(7), pages 1135-1149, July.
    3. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    4. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    5. López Cabrera, Brenda & Odening, Martin & Ritter, Matthias, 2013. "Pricing rainfall futures at the CME," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4286-4298.
    6. Hélène Hamisultane, 2008. "Which Method for Pricing Weather Derivatives ?," Working Papers halshs-00355856, HAL.
    7. Gonglin Yuan & Xiangrong Li, 2019. "A Numerical Algorithm for the Coupled PDEs Control Problem," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 697-707, February.
    8. Härdle, Wolfgang Karl & López-Cabrera, Brenda & Ritter, Matthias, 2012. "Forecast based pricing of weather derivatives," SFB 649 Discussion Papers 2012-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Zhou & Johnny Siu-Hang Li & Jeffrey Pai, 2019. "Pricing temperature derivatives with a filtered historical simulation approach," The European Journal of Finance, Taylor & Francis Journals, vol. 25(15), pages 1462-1484, October.
    2. Cui, Hairong & Zhou, Ying & Dzandu, Michael D. & Tang, Yinshan & Lu, Xunfa, 2019. "Is temperature-index derivative suitable for China?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    3. Alessio Giorgini & Rogemar S. Mamon & Marianito R. Rodrigo, 2021. "A Stochastic Harmonic Oscillator Temperature Model for the Valuation of Weather Derivatives," Mathematics, MDPI, vol. 9(22), pages 1-15, November.
    4. repec:hum:wpaper:sfb649dp2014-006 is not listed on IDEAS
    5. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    6. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    7. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    8. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    9. Musshoff, Oliver & Odening, Martin & Xu, Wei, 2006. "Modeling and Hedging Rain Risk," 2006 Annual meeting, July 23-26, Long Beach, CA 21050, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org, revised Apr 2024.
    11. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    12. Wolfgang Karl Hardle and Maria Osipenko, 2012. "Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    13. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    14. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    15. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618.
    16. Sun, Baojing & van Kooten, G. Cornelis, 2014. "Financial Weather Options for Crop Production," Working Papers 164323, University of Victoria, Resource Economics and Policy.
    17. Musshoff, Oliver & Odening, Martin & Xu, Wei, 2005. "Zur Bewertung von Wetterderivaten als innovative Risikomanagementinstrumente in der Landwirtschaft," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 54(04), pages 1-13.
    18. Dorfleitner, Gregor & Wimmer, Maximilian, 2010. "The pricing of temperature futures at the Chicago Mercantile Exchange," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1360-1370, June.
    19. Härdle, Wolfgang Karl & López-Cabrera, Brenda & Ritter, Matthias, 2012. "Forecast based pricing of weather derivatives," SFB 649 Discussion Papers 2012-027, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    20. Ahčan, Aleš, 2012. "Statistical analysis of model risk concerning temperature residuals and its impact on pricing weather derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 131-138.
    21. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:58:y:2021:i:3:d:10.1007_s10614-020-10052-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.