Multi-Factor RFG-LSTM Algorithm for Stock Sequence Predicting
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-020-10008-2
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Dixon, Matthew & Klabjan, Diego & Bang, Jin Hoon, 2017. "Classification-based financial markets prediction using deep neural networks," Algorithmic Finance, IOS Press, vol. 6(3-4), pages 67-77.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Lei & Zhao, Xin & Zhu, Ge & He, Jun & Chen, Jian & Chen, Zhicheng & Traore, Seydou & Liu, Junguo & Singh, Vijay P., 2023. "Short-term daily reference evapotranspiration forecasting using temperature-based deep learning models in different climate zones in China," Agricultural Water Management, Elsevier, vol. 289(C).
- Fansheng Meng & Rong Dou, 2024. "Prophet-LSTM-BP Ensemble Carbon Trading Price Prediction Model," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1805-1825, May.
- Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Peng Zhu & Yuante Li & Yifan Hu & Qinyuan Liu & Dawei Cheng & Yuqi Liang, 2024. "LSR-IGRU: Stock Trend Prediction Based on Long Short-Term Relationships and Improved GRU," Papers 2409.08282, arXiv.org, revised Sep 2024.
- Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
- Zineb Lanbouri & Saaid Achchab, 2019. "A new approach for Trading based on Long-Short Term memory technique [Une nouvelle approche pour le Trading basée sur la technique Long-Short Term Memory]," Post-Print hal-02396905, HAL.
- Şirin Özlem & Omer Faruk Tan, 2022. "Predicting cash holdings using supervised machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2018. "DeepLOB: Deep Convolutional Neural Networks for Limit Order Books," Papers 1808.03668, arXiv.org, revised Jan 2020.
- Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
- S M Raju & Ali Mohammad Tarif, 2020. "Real-Time Prediction of BITCOIN Price using Machine Learning Techniques and Public Sentiment Analysis," Papers 2006.14473, arXiv.org.
- Lei Ruan & Heng Liu, 2021. "Financial Distress Prediction Using GA-BP Neural Network Model," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
- Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
- Adam Korniejczuk & Robert Ślepaczuk, 2024.
"Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market,"
Working Papers
2024-09, Faculty of Economic Sciences, University of Warsaw.
- Adam Korniejczuk & Robert 'Slepaczuk, 2024. "Statistical arbitrage in multi-pair trading strategy based on graph clustering algorithms in US equities market," Papers 2406.10695, arXiv.org.
- Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Krzysztof Piasecki & Michał Dominik Stasiak, 2020. "Optimization Parameters of Trading System with Constant Modulus of Unit Return," Mathematics, MDPI, vol. 8(8), pages 1-17, August.
- Artur Sokolovsky & Luca Arnaboldi & Jaume Bacardit & Thomas Gross, 2021. "Volume-Centred Range Bars: Novel Interpretable Representation of Financial Markets Designed for Machine Learning Applications," Papers 2103.12419, arXiv.org, revised May 2022.
- Matthew F. Dixon & Nicholas G. Polson & Kemen Goicoechea, 2022. "Deep Partial Least Squares for Empirical Asset Pricing," Papers 2206.10014, arXiv.org.
- Takuya Shintate & Lukáš Pichl, 2019. "Trend Prediction Classification for High Frequency Bitcoin Time Series with Deep Learning," JRFM, MDPI, vol. 12(1), pages 1-15, January.
- Ben Moews & Gbenga Ibikunle, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Papers 2002.10385, arXiv.org.
- Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Mohammad El Hajj & Jamil Hammoud, 2023. "Unveiling the Influence of Artificial Intelligence and Machine Learning on Financial Markets: A Comprehensive Analysis of AI Applications in Trading, Risk Management, and Financial Operations," JRFM, MDPI, vol. 16(10), pages 1-16, October.
- Jireh Yi-Le Chan & Seuk Wai Phoong & Wai Khuen Cheng & Yen-Lin Chen, 2022. "Support Resistance Levels towards Profitability in Intelligent Algorithmic Trading Models," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
More about this item
Keywords
Long short-term memory; Rectified forgetting gate; Multi-factor model portfolio; Recurrent neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:57:y:2021:i:4:d:10.1007_s10614-020-10008-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.