IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v55y2020i1d10.1007_s10614-016-9641-9.html
   My bibliography  Save this article

A Comparative Study of Technical Trading Strategies Using a Genetic Algorithm

Author

Listed:
  • Luís Lobato Macedo

    (AT – Autoridade Tributária e Aduaneira, Sub-Direcção Geral de Cobrança (Revenue & Customs, Deputy Directorate-General for Tax Collection)
    University of Coimbra)

  • Pedro Godinho

    (University of Coimbra
    University of Coimbra)

  • Maria João Alves

    (Institute of System & Computer Engineering (INESC) at Coimbra Rua Antero de Quental
    University of Coimbra)

Abstract

Traditional approaches to the study of technical analysis (TA) often focus on the performance of a single indicator, which seems to fall short in scope and depth. We use a genetic algorithm (GA) to optimize trading strategies in the three major Forex markets in order to ascertain the suitability of TA strategies and rules to achieve consistently superior returns, by comparing momentum, trend and breakout indicators. The indicators with the parameters generated through our GA consistently outperform the equivalent indicators by applying parameters commonly used by the trading industry. EUR/USD and GBP/USD markets have interesting return figures before trading costs. The inclusion of spreads and commissions weakens returns substantially, suggesting that under a more realistic set of assumptions these markets could be efficient. Trend indicators generate better outcomes and GBP/USD qualifies as the most profitable market. Different aggregate returns in different markets may be evidence of distinct maturation stages under an evolving efficiency market perspective. Our GA is able to search a wider solution space than traditional configurations and offers the possibility of recovering latent data, thus avoiding premature convergence.

Suggested Citation

  • Luís Lobato Macedo & Pedro Godinho & Maria João Alves, 2020. "A Comparative Study of Technical Trading Strategies Using a Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 55(1), pages 349-381, January.
  • Handle: RePEc:kap:compec:v:55:y:2020:i:1:d:10.1007_s10614-016-9641-9
    DOI: 10.1007/s10614-016-9641-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-016-9641-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-016-9641-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    2. Reitz, Stefan, 2006. "On the predictive content of technical analysis," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 121-137, August.
    3. Olson, Dennis, 2004. "Have trading rule profits in the currency markets declined over time?," Journal of Banking & Finance, Elsevier, vol. 28(1), pages 85-105, January.
    4. Schulmeister, Stephan, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
    5. Chih-Ming Hsu, 2014. "An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 2645-2664, December.
    6. Neely, C. J. & Weller, P. A., 2003. "Intraday technical trading in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 22(2), pages 223-237, April.
    7. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    8. Shyh-Wei Chen, 2010. "Testing the hypothesis of market efficiency in the Taiwan-US forward exchange market since 1990," Applied Economics, Taylor & Francis Journals, vol. 42(1), pages 121-132.
    9. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    10. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    11. Ivelina Pavlova & A. M. Parhizgari, 2011. "In search of momentum profits: are they illusory?," Applied Financial Economics, Taylor & Francis Journals, vol. 21(21), pages 1617-1639.
    12. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    13. Armin Shmilovici & Yoav Kahiri & Irad Ben-Gal & Shmuel Hauser, 2009. "Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 131-154, March.
    14. Neely, Christopher J. & Weller, Paul A. & Ulrich, Joshua M., 2009. "The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(2), pages 467-488, April.
    15. Jiali Fang & Ben Jacobsen & Yafeng Qin, 2014. "Predictability of the simple technical trading rules: An out‐of‐sample test," Review of Financial Economics, John Wiley & Sons, vol. 23(1), pages 30-45, January.
    16. Kuang, P. & Schröder, M. & Wang, Q., 2014. "Illusory profitability of technical analysis in emerging foreign exchange markets," International Journal of Forecasting, Elsevier, vol. 30(2), pages 192-205.
    17. Anthony Brabazon & Michael O’Neill, 2004. "Evolving technical trading rules for spot foreign-exchange markets using grammatical evolution," Computational Management Science, Springer, vol. 1(3), pages 311-327, October.
    18. Fama, Eugene F, et al, 1969. "The Adjustment of Stock Prices to New Information," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 10(1), pages 1-21, February.
    19. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    20. Paolo Falbo & Cristian Pelizzari, 2011. "Stable classes of technical trading rules," Applied Economics, Taylor & Francis Journals, vol. 43(14), pages 1769-1785.
    21. Chen, Cheng-Wei & Huang, Chin-Sheng & Lai, Hung-Wei, 2009. "The impact of data snooping on the testing of technical analysis: An empirical study of Asian stock markets," Journal of Asian Economics, Elsevier, vol. 20(5), pages 580-591, September.
    22. N.C. Suganya & G.A. Pai, 2012. "Wavelet evolutionary network for complex-constrained portfolio rebalancing," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(7), pages 1367-1385.
    23. Yu, Hao & Nartea, Gilbert V. & Gan, Christopher & Yao, Lee J., 2013. "Predictive ability and profitability of simple technical trading rules: Recent evidence from Southeast Asian stock markets," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 356-371.
    24. Pedro Godinho, 2012. "Can abnormal returns be earned on bandwidth-bounded currencies? Evidence from a genetic algorithm," Economic Issues Journal Articles, Economic Issues, vol. 17(1), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marco Corazza & Claudio Pizzi & Andrea Marchioni, 2024. "A financial trading system with optimized indicator setting, trading rule definition, and signal aggregation through Particle Swarm Optimization," Computational Management Science, Springer, vol. 21(1), pages 1-29, June.
    2. Vinícius Ferraz & Thomas Pitz, 2024. "Analyzing the Impact of Strategic Behavior in an Evolutionary Learning Model Using a Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 437-475, February.
    3. Jaime Alberto Gómez Vilchis & Federico Hernández Álvarez & Luis Ignacio Román de la Sancha, 2021. "Autómata Evolutivo (AE) para el mercado accionario usando Martingalas y un Algoritmo Genético," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(4), pages 1-22, Octubre -.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.
    2. Pedro Godinho, 2012. "Can abnormal returns be earned on bandwidth-bounded currencies? Evidence from a genetic algorithm," Economic Issues Journal Articles, Economic Issues, vol. 17(1), pages 1-26, March.
    3. Stephan Schulmeister, 2007. "The Interaction Between the Aggregate Behaviour of Technical Trading Systems and Stock Price Dynamics," WIFO Working Papers 290, WIFO.
    4. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan & Li, Yan, 2024. "The out-of-sample performance of carry trades," Journal of International Money and Finance, Elsevier, vol. 143(C).
    5. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan, 2016. "Technical trading: Is it still beating the foreign exchange market?," Journal of International Economics, Elsevier, vol. 102(C), pages 188-208.
    6. Dockery, Everton & Todorov, Ivan, 2023. "Further evidence on the returns to technical trading rules: Insights from fourteen currencies," Journal of Multinational Financial Management, Elsevier, vol. 69(C).
    7. Jin, Xiaoye, 2021. "What do we know about the popularity of technical analysis in foreign exchange markets? A skewness preference perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
    8. Christopher J. Neely & Paul A. Weller, 2011. "Technical analysis in the foreign exchange market," Working Papers 2011-001, Federal Reserve Bank of St. Louis.
    9. Xiaoye Jin, 2022. "Evaluating the predictive power of intraday technical trading in China's crude oil market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1416-1432, November.
    10. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    11. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    12. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    13. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    14. Guanqing Liu, 2019. "Technical Trading Behaviour: Evidence from Chinese Rebar Futures Market," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 669-704, August.
    15. Matheus José Silva de Souza & Danilo Guimarães Franco Ramos & Marina Garcia Pena & Vinicius Amorim Sobreiro & Herbert Kimura, 2018. "Examination of the profitability of technical analysis based on moving average strategies in BRICS," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 4(1), pages 1-18, December.
    16. Frömmel, Michael & Lampaert, Kevin, 2016. "Does frequency matter for intraday technical trading?," Finance Research Letters, Elsevier, vol. 18(C), pages 177-183.
    17. Ebert, Sebastian & Hilpert, Christian, 2019. "Skewness preference and the popularity of technical analysis," Journal of Banking & Finance, Elsevier, vol. 109(C).
    18. Jacinta Chan Phooi M’ng & Rozaimah Zainudin, 2016. "Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-19, August.
    19. Komáromi, György, 2002. "A hatékony piacok elméletének elméleti és gyakorlati relevanciája [The theoretical and practical relevance of the theory of efficient markets]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 377-395.
    20. Neely, Christopher J. & Weller, Paul A., 2013. "Lessons from the evolution of foreign exchange trading strategies," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3783-3798.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:55:y:2020:i:1:d:10.1007_s10614-016-9641-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.