IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v53y2019i4d10.1007_s10614-018-9815-8.html
   My bibliography  Save this article

Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics

Author

Listed:
  • Shunwei Zhu

    (University of Shanghai for Science and Technology)

  • Bo Wang

    (University of Shanghai for Science and Technology)

Abstract

Being able to generate a volatility smile and adequately explain how it moves up and down in response to changes in risk, stochastic volatility models have replaced BS model. A single-factor volatility model can generate steep smiles or flat smiles at a given volatility level, but it cannot generate both for given parameters. In order to match the market implied volatility surface precisely, Grasselli introduced a 4/2 stochastic volatility model that includes the Heston model and the 3/2 model, performing as affine and non-affine model respectively. The present paper is intended to further investigate the 4/2 model, which falls into four parts. First, we apply Lewis’s fundamental transform approach instead of Grasselli’s method to deduce PDEs, which is intuitional and simple; Then, we use a result derived by Craddock and Lennox using Lie Symmetries theory for PDEs, and the results are more objective and reasonable; Finally, through adopting the data on S&P 500, we estimate the parameters of the 4/2 model; Furthermore, we investigate the 4/2 model along with the Heston model and the 3/2 model and compare their different performances. Our results illustrate that the 4/2 model outperforms the Heston and the 3/2 model for the fitting problem.

Suggested Citation

  • Shunwei Zhu & Bo Wang, 2019. "Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1421-1442, April.
  • Handle: RePEc:kap:compec:v:53:y:2019:i:4:d:10.1007_s10614-018-9815-8
    DOI: 10.1007/s10614-018-9815-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-018-9815-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-018-9815-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Craddock & Eckhard Platen, 2003. "Symmetry Group Methods for Fundamental Solutions and Characteristic Functions," Research Paper Series 90, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Alessandro Gnoatto & Martino Grasselli & Eckhard Platen, 2016. "A Penny Saved is a Penny Earned: Less Expensive Zero Coupon Bonds," Research Paper Series 374, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Alessandro Gnoatto & Martino Grasselli, 2013. "An analytic multi-currency model with stochastic volatility and stochastic interest rates," Papers 1302.7246, arXiv.org, revised Mar 2013.
    7. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    8. P. E. Kloeden & Eckhard Platen, 1992. "Higher-order implicit strong numerical schemes for stochastic differential equations," Published Paper Series 1992-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    9. Christian Kahl & Peter Jackel, 2006. "Fast strong approximation Monte Carlo schemes for stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 513-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yumo Zhang, 2021. "Dynamic Optimal Mean-Variance Investment with Mispricing in the Family of 4/2 Stochastic Volatility Models," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
    2. Yumo Zhang, 2023. "Robust Optimal Investment Strategies for Mean-Variance Asset-Liability Management Under 4/2 Stochastic Volatility Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-32, March.
    3. Yumo Zhang, 2023. "Utility maximization in a stochastic affine interest rate and CIR risk premium framework: a BSDE approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 97-128, June.
    4. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    2. Martino Grasselli, 2017. "The 4/2 Stochastic Volatility Model: A Unified Approach For The Heston And The 3/2 Model," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 1013-1034, October.
    3. Alessandro Gnoatto, 2017. "Coherent Foreign Exchange Market Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-29, February.
    4. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2013, January-A.
    5. Eckhard Platen & Renata Rendek, 2012. "The Affine Nature of Aggregate Wealth Dynamics," Research Paper Series 322, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    7. Alexander Lipton & Andrey Gal & Andris Lasis, 2014. "Pricing of vanilla and first-generation exotic options in the local stochastic volatility framework: survey and new results," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1899-1922, November.
    8. Alexander Lipton, 2023. "Kelvin Waves, Klein-Kramers and Kolmogorov Equations, Path-Dependent Financial Instruments: Survey and New Results," Papers 2309.04547, arXiv.org.
    9. Gabriel Drimus & Walter Farkas, 2013. "Local volatility of volatility for the VIX market," Review of Derivatives Research, Springer, vol. 16(3), pages 267-293, October.
    10. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    11. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carol Methods for the Heston Model," Research Paper Series 307, Quantitative Finance Research Centre, University of Technology, Sydney.
    12. Alziary Chassat, Bénédicte & Takac, Peter, 2017. "On the Heston Model with Stochastic Volatility: Analytic Solutions and Complete Markets," TSE Working Papers 17-796, Toulouse School of Economics (TSE).
    13. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    14. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    15. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    16. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    17. Fazlollah Soleymani & Andrey Itkin, 2019. "Pricing foreign exchange options under stochastic volatility and interest rates using an RBF--FD method," Papers 1903.00937, arXiv.org.
    18. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    19. Lay Harold A. & Colgin Zane & Reshniak Viktor & Khaliq Abdul Q. M., 2018. "On the implementation of multilevel Monte Carlo simulation of the stochastic volatility and interest rate model using multi-GPU clusters," Monte Carlo Methods and Applications, De Gruyter, vol. 24(4), pages 309-321, December.
    20. Falko Baustian & Katev{r}ina Filipov'a & Jan Posp'iv{s}il, 2019. "Solution of option pricing equations using orthogonal polynomial expansion," Papers 1912.06533, arXiv.org, revised Jun 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:53:y:2019:i:4:d:10.1007_s10614-018-9815-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.