IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v16y2013i3p267-293.html
   My bibliography  Save this article

Local volatility of volatility for the VIX market

Author

Listed:
  • Gabriel Drimus
  • Walter Farkas

Abstract

Following a trend of sustained and accelerated growth, the VIX futures and options market has become a closely followed, active and liquid market. The standard stochastic volatility models—which focus on the modeling of instantaneous variance—are unable to fit the entire term structure of VIX futures as well as the entire VIX options surface. In contrast, we propose to model directly the VIX index, in a mean-reverting local volatility-of-volatility model, which will provide a global fit to the VIX market. We then show how to construct the local volatility-of-volatility surface by adapting the ideas in Carr (Local variance gamma. Bloomberg Quant Research, New York, 2008 ) and Andreasen and Huge (Risk Mag 76–79, 2011 ) to a mean-reverting process. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Gabriel Drimus & Walter Farkas, 2013. "Local volatility of volatility for the VIX market," Review of Derivatives Research, Springer, vol. 16(3), pages 267-293, October.
  • Handle: RePEc:kap:revdev:v:16:y:2013:i:3:p:267-293
    DOI: 10.1007/s11147-012-9086-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11147-012-9086-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11147-012-9086-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leif Andersen & Jesper Andreasen, 2000. "Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing," Review of Derivatives Research, Springer, vol. 4(3), pages 231-262, October.
    2. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Matthias Fengler, 2009. "Arbitrage-free smoothing of the implied volatility surface," Quantitative Finance, Taylor & Francis Journals, vol. 9(4), pages 417-428.
    5. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    6. Ernst Eberlein & Dilip Madan, 2009. "Sato processes and the valuation of structured products," Quantitative Finance, Taylor & Francis Journals, vol. 9(1), pages 27-42.
    7. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    2. Martino Grasselli & Andrea Mazzoran & Andrea Pallavicini, 2024. "A general framework for a joint calibration of VIX and VXX options," Annals of Operations Research, Springer, vol. 336(1), pages 3-26, May.
    3. Felix Brinkmann & Olaf Korn, 2018. "Risk-adjusted option-implied moments," Review of Derivatives Research, Springer, vol. 21(2), pages 149-173, July.
    4. Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Smile Modeling In Commodity Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(03), pages 1-28, May.
    5. Carol Alexander & Julia Kapraun & Dimitris Korovilas, 2015. "Trading and Investing in Volatility Products," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 24(4), pages 313-347, November.
    6. Ying-Li Wang & Cheng-Long Xu & Ping He, 2023. "A Markovian empirical model for the VIX index and the pricing of the corresponding derivatives," Papers 2309.08175, arXiv.org.
    7. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.
    8. Bo Jing & Shenghong Li & Yong Ma, 2020. "Pricing VIX options with volatility clustering," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(6), pages 928-944, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel G. Drimus, 2012. "Options on realized variance by transform methods: a non-affine stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 12(11), pages 1679-1694, November.
    2. Alexander Lipton & Artur Sepp, 2022. "Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility," Papers 2202.07849, arXiv.org.
    3. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
    4. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    5. Barone-Adesi, Giovanni & Rasmussen, Henrik & Ravanelli, Claudia, 2005. "An option pricing formula for the GARCH diffusion model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 287-310, April.
    6. Kim, Jerim & Kim, Bara & Moon, Kyoung-Sook & Wee, In-Suk, 2012. "Valuation of power options under Heston's stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1796-1813.
    7. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    8. Shunwei Zhu & Bo Wang, 2019. "Unified Approach for the Affine and Non-affine Models: An Empirical Analysis on the S&P 500 Volatility Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1421-1442, April.
    9. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carlo methods for the Heston model," Papers 1202.3217, arXiv.org, revised May 2012.
    10. Alziary Chassat, Bénédicte & Takac, Peter, 2017. "On the Heston Model with Stochastic Volatility: Analytic Solutions and Complete Markets," TSE Working Papers 17-796, Toulouse School of Economics (TSE).
    11. De Col, Alvise & Gnoatto, Alessandro & Grasselli, Martino, 2013. "Smiles all around: FX joint calibration in a multi-Heston model," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3799-3818.
    12. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    13. Eckhard Platen & Renata Rendek, 2012. "The Affine Nature of Aggregate Wealth Dynamics," Research Paper Series 322, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Renata Rendek, 2013. "Modeling Diversified Equity Indices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 23, July-Dece.
    15. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    16. Wendong Zheng & Pingping Zeng, 2015. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Papers 1504.08136, arXiv.org.
    17. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
    18. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    19. Wendong Zheng & Pingping Zeng, 2016. "Pricing timer options and variance derivatives with closed-form partial transform under the 3/2 model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 344-373, September.
    20. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.

    More about this item

    Keywords

    VIX futures; VIX options; Volatility of volatility ; Volatility derivatives; G12; G13;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:16:y:2013:i:3:p:267-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.