IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v25y2005i1p189-205.html
   My bibliography  Save this article

Aggregation of Dependent Risks Using the Koehler–Symanowski Copula Function

Author

Listed:
  • Paola Palmitesta
  • Corrado Provasi

Abstract

This study examines the Koehler and Symanovski copula function with specific marginals, such as the skew Student-t, the skew generalized secant hyperbolic, and the skew generalized exponential power distributions, in modelling financial returns and measuring dependent risks. The copula function can be specified by adding interaction terms to the cumulative distribution function for the case of independence. It can also be derived using a particular transformation of independent gamma functions. The advantage of using this distribution relative to others lies in its ability to model complex dependence structures among subsets of marginals, as we show for aggregate dependent risks of some market indices. Copyright Springer Science + Business Media, Inc. 2005

Suggested Citation

  • Paola Palmitesta & Corrado Provasi, 2005. "Aggregation of Dependent Risks Using the Koehler–Symanowski Copula Function," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 189-205, February.
  • Handle: RePEc:kap:compec:v:25:y:2005:i:1:p:189-205
    DOI: 10.1007/s10614-005-6282-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-005-6282-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-005-6282-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosenberg, Joshua V. & Schuermann, Til, 2006. "A general approach to integrated risk management with skewed, fat-tailed risks," Journal of Financial Economics, Elsevier, vol. 79(3), pages 569-614, March.
    2. Koehler, K. J. & Symanowski, J. T., 1995. "Constructing Multivariate Distributions with Specific Marginal Distributions," Journal of Multivariate Analysis, Elsevier, vol. 55(2), pages 261-282, November.
    3. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
    4. Palmitesta Paola & Provasi Corrado, 2004. "GARCH-type Models with Generalized Secant Hyperbolic Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-19, May.
    5. Kodde, D A & Palm, Franz C & Pfann, G A, 1990. "Asymptotic Least-Squares Estimation Efficiency Considerations and Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(3), pages 229-243, July-Sept.
    6. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henryk Gurgul & Robert Syrek, 2010. "Polish stock market and some foreign markets - dependence analysis by regime-switching copulas," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 8, pages 21-39.
    2. Matthias Fischer & Christian Köck, 2007. "Multivariate Copula Models at Work: Dependence Structure of Energie Prices," Energy and Environmental Modeling 2007 24000014, EcoMod.
    3. Fischer, Matthias J. & Köck, Christian & Schlüter, Stephan & Weigert, Florian, 2007. "Multivariate Copula Models at Work: Outperforming the desert island copula?," Discussion Papers 79/2007, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Palmitesta & Corrado Provasi, 2004. "Aggregation of Dependent Risks with Specific Marginals by the Family of Koehler-Symanowski Distributions," Computing in Economics and Finance 2004 306, Society for Computational Economics.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    3. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Working Papers hal-03827332, HAL.
    4. Chen, Ray-Bing & Chen, Ying & Härdle, Wolfgang K., 2014. "TVICA—Time varying independent component analysis and its application to financial data," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 95-109.
    5. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    6. Qi Nan Zhai, 2015. "Asset Pricing Under Ambiguity and Heterogeneity," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 16, July-Dece.
    7. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    8. Jean-Philippe Bouchaud & Julien Kockelkoren & Marc Potters, 2006. "Random walks, liquidity molasses and critical response in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 115-123.
    9. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    10. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    11. Gluzberg, Victor E. & Katz, Yuri A., 2019. "Planetary boundaries of consumption growth: Declining social discount rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 362-374.
    12. Aït-Youcef, Camille & Joëts, Marc, 2024. "The role of index traders in the financialization of commodity markets: A behavioral finance approach," Energy Economics, Elsevier, vol. 136(C).
    13. Grigory Beliavsky & Natalya Danilova & Guennady Ougolnitsky, 2019. "Calculation of Probability of the Exit of a Stochastic Process from a Band by Monte-Carlo Method: A Wiener-Hopf Factorization," Mathematics, MDPI, vol. 7(7), pages 1-8, June.
    14. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Working Papers hal-02946146, HAL.
    15. Daniele Angelini & Matthieu Garcin, 2024. "Market information of the fractional stochastic regularity model," Papers 2409.07159, arXiv.org.
    16. Paulo Ferreira & Andreia Dionísio, "undated". "G7 Stock Markets, Who Is The First To Defeat The Dcca Correlation?," Review of Socio - Economic Perspectives 201605, Reviewsep.
    17. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    18. Giovanni Bonaccolto & Massimiliano Caporin & Sandra Paterlini, 2018. "Asset allocation strategies based on penalized quantile regression," Computational Management Science, Springer, vol. 15(1), pages 1-32, January.
    19. Fenglong Guo, 2025. "Pricing Vulnerable Options With Variance Gamma Systematic and Idiosyncratic Factors by Laplace Transform Inversion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(1), pages 47-76, January.
    20. Hoga, Yannick, 2017. "Monitoring multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 105-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:25:y:2005:i:1:p:189-205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.