The Effects of Overnight Events on Daytime Return: A Market Microstructure Analysis of Market Quality
Author
Abstract
Suggested Citation
DOI: 10.1007/s10690-023-09424-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oldfield, George S, Jr & Rogalski, Richard J, 1980. "A Theory of Common Stock Returns over Trading and Non-Trading Periods," Journal of Finance, American Finance Association, vol. 35(3), pages 729-751, June.
- John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993.
"Trading Volume and Serial Correlation in Stock Returns,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
- John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1992. "Trading Volume and Serial Correlation in Stock Returns," NBER Working Papers 4193, National Bureau of Economic Research, Inc.
- Wang, Jiang & Grossman, Sanford & Campbell, John, 1993. "Trading Volume and Serial Correlation in Stock Returns," Scholarly Articles 3128710, Harvard University Department of Economics.
- Sentana, Enrique & Wadhwani, Sushil B, 1992. "Feedback Traders and Stock Return Autocorrelations: Evidence from a Century of Daily Data," Economic Journal, Royal Economic Society, vol. 102(411), pages 415-425, March.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Lou, Dong & Polk, Christopher & Skouras, Spyros, 2019.
"A tug of war: Overnight versus intraday expected returns,"
Journal of Financial Economics, Elsevier, vol. 134(1), pages 192-213.
- Lou, Dong & Polk, Christopher & Skouras, Spyros, 2015. "A tug of war: overnight versus intraday expected returns," LSE Research Online Documents on Economics 119010, London School of Economics and Political Science, LSE Library.
- Lou, Dong & Polk, Christopher & Skouras, Spyros, 2019. "A tug of war: overnight versus intraday expected returns," LSE Research Online Documents on Economics 87481, London School of Economics and Political Science, LSE Library.
- Sumon Kumar Bhaumik & Manisha Chakrabarty & Ali M. Kutan & Ekta Selarka, 2021.
"How Effective are Stock Market Reforms in Emerging Market Economies? Evidence from a Panel VAR Model of the Indian Stock Market,"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 795-818, December.
- Bhaumik, Sumon Kumar & Chakrabarty, Manisha & Kutan, Ali M. & Selarka, Ekta, 2018. "How Effective are Stock Market Reforms in Emerging Market Economies? Evidence from a Panel VAR Model of the Indian Stock Market," GLO Discussion Paper Series 290, Global Labor Organization (GLO).
- Puffer, Marlene K., 1991. "Private information and weekend volatility in the Tokyo and New York stock markets," Journal of Banking & Finance, Elsevier, vol. 15(2), pages 407-423, April.
- Bessembinder, Hendrik & Hertzel, Michael G, 1993. "Return Autocorrelations around Nontrading Days," The Review of Financial Studies, Society for Financial Studies, vol. 6(1), pages 155-189.
- Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019.
"Dynamic semiparametric models for expected shortfall (and Value-at-Risk),"
Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
- Andrew J. Patton & Johanna F. Ziegel & Rui Chen, 2017. "Dynamic Semiparametric Models for Expected Shortfall (and Value-at-Risk)," Papers 1707.05108, arXiv.org.
- K. L. Krishna & J. V. Meenakshi, 2022. "Agricultural Productivity Growth and Structural Transformation in Rural India: Some Recent Evidence," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 277-302, September.
- Van Ness, Bonnie & Van Ness, Robert & Yildiz, Serhat, 2021. "Private information in trades, R2, and large stock price movements," Journal of Banking & Finance, Elsevier, vol. 131(C).
- Liu, Qingfu & Tse, Yiuman, 2017. "Overnight returns of stock indexes: Evidence from ETFs and futures," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 440-451.
- Meng, Xiaochun & Taylor, James W., 2020. "Estimating Value-at-Risk and Expected Shortfall using the intraday low and range data," European Journal of Operational Research, Elsevier, vol. 280(1), pages 191-202.
- Ying Jiang & Neil Kellard & Xiaoquan Liu, 2020. "Night trading and market quality: Evidence from Chinese and US precious metal futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1486-1507, October.
- Dilip Kumar, 2020. "Value-at-Risk in the Presence of Structural Breaks Using Unbiased Extreme Value Volatility Estimator," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 587-610, September.
- Masulis, Ronald W & Ng, Victor K, 1995. "Overnight and Daytime Stock-Return Dynamics on the London Stock Exchange: The Impact of the "Big Bang" and the 1987 Stock-Market Crash," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(4), pages 365-378, October.
- Ham, Hyuna & Ryu, Doojin & Webb, Robert I., 2022. "The effects of overnight events on daytime trading sessions," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Tsiakas, Ilias, 2008. "Overnight information and stochastic volatility: A study of European and US stock exchanges," Journal of Banking & Finance, Elsevier, vol. 32(2), pages 251-268, February.
- Akbas, Ferhat & Boehmer, Ekkehart & Jiang, Chao & Koch, Paul D., 2022. "Overnight returns, daytime reversals, and future stock returns," Journal of Financial Economics, Elsevier, vol. 145(3), pages 850-875.
- Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
- Lockwood, Larry J & Linn, Scott C, 1990. "An Examination of Stock Market Return Volatility during Overnight and Intraday Periods, 1964-1989," Journal of Finance, American Finance Association, vol. 45(2), pages 591-601, June.
- Biswabhusan Bhuyan & Subhamitra Patra & Ranjan Kumar Bhuian, 2020. "Market Adaptability and Evolving Predictability of Stock Returns: An Evidence from India," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(4), pages 605-619, December.
- Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2016. "Forecasting stock volatility using after-hour information: Evidence from the Australian Stock Exchange," Economic Modelling, Elsevier, vol. 52(PB), pages 592-608.
- Frey, Rudiger & McNeil, Alexander J., 2002. "VaR and expected shortfall in portfolios of dependent credit risks: Conceptual and practical insights," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1317-1334, July.
- Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "Liquidity and Autocorrelations in Individual Stock Returns," Journal of Finance, American Finance Association, vol. 61(5), pages 2365-2394, October.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Chan, Kalok, 1993. "Imperfect Information and Cross-Autocorrelation among Stock Prices," Journal of Finance, American Finance Association, vol. 48(4), pages 1211-1230, September.
- Raushan Kumar, 2021. "Predicting Wheat Futures Prices in India," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(1), pages 121-140, March.
- Zhu, Xuehong & Zhang, Hongwei & Zhong, Meirui, 2017. "Volatility forecasting using high frequency data: The role of after-hours information and leverage effects," Resources Policy, Elsevier, vol. 54(C), pages 58-70.
- Sarveshwar Kumar Inani, 2018. "Price Discovery and Efficiency of Indian Agricultural Commodity Futures Market: An Empirical Investigation," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(1), pages 129-154, March.
- Jacob Boudoukh & Ronen Feldman & Shimon Kogan & Matthew Richardson, 2019. "Information, Trading, and Volatility: Evidence from Firm-Specific News," The Review of Financial Studies, Society for Financial Studies, vol. 32(3), pages 992-1033.
- Amihud, Yakov & Mendelson, Haim, 1987. "Trading Mechanisms and Stock Returns: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 42(3), pages 533-553, July.
- Stoll, Hans R & Whaley, Robert E, 1990. "Stock Market Structure and Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 37-71.
- Cecchetti, Stephen G & Lam, Pok-sang, 1994. "Variance-Ratio Tests: Small-Sample Properties with an Application to International Output Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 177-186, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jian, Zhihong & Li, Xupei & Zhu, Zhican, 2020. "Sequential forecasting of downside extreme risk during overnight and daytime: Evidence from the Chinese Stock Market☆," Pacific-Basin Finance Journal, Elsevier, vol. 64(C).
- Kallinterakis, Vasileios & Karaa, Rabaa, 2023. "From dusk till dawn (and vice versa): Overnight-versus-daytime reversals and feedback trading," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
- Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
- Qiao, Kenan & Dam, Lammertjan, 2020. "The overnight return puzzle and the “T+1” trading rule in Chinese stock markets," Journal of Financial Markets, Elsevier, vol. 50(C).
- Tianyi Wang & Sicong Cheng & Fangsheng Yin & Mei Yu, 2022. "Overnight volatility, realized volatility, and option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1264-1283, July.
- David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
- Chao Wang & Richard Gerlach & Qian Chen, 2018. "A Semi-parametric Realized Joint Value-at-Risk and Expected Shortfall Regression Framework," Papers 1807.02422, arXiv.org, revised Jan 2021.
- d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
- Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
- Caporale, Guglielmo Maria & Zekokh, Timur, 2019.
"Modelling volatility of cryptocurrencies using Markov-Switching GARCH models,"
Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
- Guglielmo Maria Caporale & Timur Zekokh, 2018. "Modelling Volatility of Cryptocurrencies Using Markov-Switching Garch Models," CESifo Working Paper Series 7167, CESifo.
- Liu, Qingfu & Tse, Yiuman, 2017. "Overnight returns of stock indexes: Evidence from ETFs and futures," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 440-451.
- Gębka, Bartosz & Wohar, Mark E., 2013. "The determinants of quantile autocorrelations: Evidence from the UK," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 51-61.
- Guanghui Cai & Zhimin Wu & Lei Peng, 2021. "Forecasting volatility with outliers in Realized GARCH models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 667-685, July.
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Rasika Yatigammana & Shelton Peiris & Richard Gerlach & David Edmund Allen, 2018. "Modelling and Forecasting Stock Price Movements with Serially Dependent Determinants," Risks, MDPI, vol. 6(2), pages 1-22, May.
More about this item
Keywords
Market microstructure; Market quality; Trading and non-trading returns; Value at risk and Expected Shortfall; Autocorrelation; Private information;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
- G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:31:y:2024:i:3:d:10.1007_s10690-023-09424-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.