IDEAS home Printed from https://ideas.repec.org/a/kap/annfin/v13y2017i1d10.1007_s10436-017-0292-1.html
   My bibliography  Save this article

A simple efficient approximation to price basket stock options with volatility smile

Author

Listed:
  • Ping Wu

    (Nanjing University of Information Science and Technology
    Nanjing Audit University)

  • Robert J. Elliott

    (University of Calgary
    University of South Australia)

Abstract

This paper develops a new approach to obtain the price and risk sensitivities of basket options which have a volatility smile. Using this approach, the Black–Scholes model and the Stochastic Volatility Inspired model have been used to obtain an approximate analytical pricing formula for basket options with a volatility smile. It is found that our approximate formula is quite accurate by comparing it with Monte Carlo simulations. It is also proved the option value of our approach is consistent with the option value generated by Levy’s and Gentle’s approaches for typical ranges of volatility. Further, we give a theoretical proof that the option values from Levy’s and Gentle’s works are the upper bound and the lower bound, respectively, for our option value. The calibration procedure and a practical example are provided. The main advantage of our approach is that it provides accurate and easily implemented basket option prices with volatility smile and hedge parameters and avoids the need to use time-consuming numerical procedures such as Monte Carlo simulation.

Suggested Citation

  • Ping Wu & Robert J. Elliott, 2017. "A simple efficient approximation to price basket stock options with volatility smile," Annals of Finance, Springer, vol. 13(1), pages 1-29, February.
  • Handle: RePEc:kap:annfin:v:13:y:2017:i:1:d:10.1007_s10436-017-0292-1
    DOI: 10.1007/s10436-017-0292-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10436-017-0292-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10436-017-0292-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vorst, Ton, 1992. "Prices and hedge ratios of average exchange rate options," International Review of Financial Analysis, Elsevier, vol. 1(3), pages 179-193.
    2. Jim Gatheral & Antoine Jacquier, 2014. "Arbitrage-free SVI volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 59-71, January.
    3. Dilip Madan, 2010. "Pricing and hedging basket options to prespecified levels of acceptability," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 607-615.
    4. Deelstra, G. & Liinev, J. & Vanmaele, M., 2004. "Pricing of arithmetic basket options by conditioning," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 55-77, February.
    5. Ruggero Caldana & Gianluca Fusai & Alessandro Gnoatto & Martino Grasselli, 2016. "General closed-form basket option pricing bounds," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 535-554, April.
    6. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    7. Griselda Deelstra & Jan Liinev & Michèle Vanmaele, 2004. "Pricing of arithmetic basket options by conditioning," ULB Institutional Repository 2013/7600, ULB -- Universite Libre de Bruxelles.
    8. Moshe Arye Milevsky & Steven E. Posner, 1999. "Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 7, pages 203-218, World Scientific Publishing Co. Pte. Ltd..
    9. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    10. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Bo & Zhu, Hongmei & Wu, Ping, 2022. "The closed-form approximation to price basket options under stochastic interest rate," Finance Research Letters, Elsevier, vol. 46(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    2. Jinke Zhou & Xiaolu Wang, 2008. "Accurate closed‐form approximation for pricing Asian and basket options," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 343-358, July.
    3. Yu, Bo & Zhu, Hongmei & Wu, Ping, 2022. "The closed-form approximation to price basket options under stochastic interest rate," Finance Research Letters, Elsevier, vol. 46(PB).
    4. Georges Dionne & Genevieve Gauthier & Nadia Ouertani & Nabil Tahani, 2011. "Heterogeneous Basket Options Pricing Using Analytical Approximations," Multinational Finance Journal, Multinational Finance Journal, vol. 15(1-2), pages 47-85, March - J.
    5. Yijuan Liang & Xiuchuan Xu, 2019. "Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities," Sustainability, MDPI, vol. 11(3), pages 1-21, February.
    6. Jean-Yves Datey & Genevieve Gauthier & Jean-Guy Simonato, 2003. "The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices," Multinational Finance Journal, Multinational Finance Journal, vol. 7(1-2), pages 55-82, March-Jun.
    7. Jianqiang Sun & Langnan Chen & Shiyin Li, 2013. "A Quasi‐Analytical Pricing Model for Arithmetic Asian Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(12), pages 1143-1166, December.
    8. Keng‐Hsin Lo & Kehluh Wang & Ming‐Feng Hsu, 2008. "Pricing European Asian options with skewness and kurtosis in the underlying distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(6), pages 598-616, June.
    9. Nielsen, J. Aase & Sandmann, Klaus, 2003. "Pricing Bounds on Asian Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(2), pages 449-473, June.
    10. Ruggero Caldana & Gianluca Fusai & Alessandro Gnoatto & Martino Grasselli, 2016. "General closed-form basket option pricing bounds," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 535-554, April.
    11. Manuel Moreno & Javier F. Navas, 2003. "Australian Asian options," Economics Working Papers 680, Department of Economics and Business, Universitat Pompeu Fabra.
    12. Manuel Moreno & Javier F. Navas, 2008. "Australian Options," Australian Journal of Management, Australian School of Business, vol. 33(1), pages 69-93, June.
    13. Xu, Guoping & Zheng, Harry, 2009. "Approximate basket options valuation for a jump-diffusion model," Insurance: Mathematics and Economics, Elsevier, vol. 45(2), pages 188-194, October.
    14. Kwangil Bae, 2019. "Valuation and applications of compound basket options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 704-720, June.
    15. Ting He, 2020. "Nonparametric Predictive Inference for Asian options," Papers 2008.13082, arXiv.org.
    16. Shiraya, Kenichiro & Takahashi, Akihiko, 2017. "A general control variate method for multi-dimensional SDEs: An application to multi-asset options under local stochastic volatility with jumps models in finance," European Journal of Operational Research, Elsevier, vol. 258(1), pages 358-371.
    17. He, Ting, 2023. "An imprecise pricing model for Asian options based on Nonparametric predictive inference," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    18. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    19. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    20. Michèle Vanmaele & Griselda Deelstra & Jan Liinev, 2004. "Approximation of stop-loss premiums involving sums of lognormals by conditioning on two variables," ULB Institutional Repository 2013/7604, ULB -- Universite Libre de Bruxelles.

    More about this item

    Keywords

    Basket options; Levy’s method; Gentle’s method; Log-normal approximation;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:13:y:2017:i:1:d:10.1007_s10436-017-0292-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.