IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i10p12412-12425d56760.html
   My bibliography  Save this article

Patterns in PARTNERing across Public Health Collaboratives

Author

Listed:
  • Christine A. Bevc

    (North Carolina Institute for Public Health, University of North Carolina, Chapel Hill, Campus Box # 8165, Chapel Hill, NC 27599, USA)

  • Jessica H. Retrum

    (Department of Social Work, Metropolitan State University of Denver, Campus Box 70, P.O. Box 173362, Denver, CO 80217-3362, USA)

  • Danielle M. Varda

    (School of Public Affairs, University of Colorado-Denver, 1380 Lawrence St., Ste. 500, Denver, CO 80204, USA)

Abstract

Inter-organizational networks represent one of the most promising practice-based approaches in public health as a way to attain resources, share knowledge, and, in turn, improve population health outcomes. However, the interdependencies and effectiveness related to the structure, management, and costs of these networks represents a critical item to be addressed. The objective of this research is to identify and determine the extent to which potential partnering patterns influence the structure of collaborative networks. This study examines data collected by PARTNER, specifically public health networks ( n = 162), to better understand the structured relationships and interactions among public health organizations and their partners, in relation to collaborative activities. Combined with descriptive analysis, we focus on the composition of public health collaboratives in a series of Exponential Random Graph (ERG) models to examine the partnerships between different organization types to identify the attribute-based effects promoting the formation of network ties within and across collaboratives. We found high variation within and between these collaboratives including composition, diversity, and interactions. The findings of this research suggest common and frequent types of partnerships, as well as opportunities to develop new collaborations. The result of this analysis offer additional evidence to inform and strengthen public health practice partnerships.

Suggested Citation

  • Christine A. Bevc & Jessica H. Retrum & Danielle M. Varda, 2015. "Patterns in PARTNERing across Public Health Collaboratives," IJERPH, MDPI, vol. 12(10), pages 1-14, October.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:12412-12425:d:56760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/10/12412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/10/12412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bevc, C.A. & Retrum, J.H. & Varda, D.M., 2015. "New perspectives on the "silo effect": Initial comparisons of network structures across public health collaboratives," American Journal of Public Health, American Public Health Association, vol. 105, pages 230-235.
    2. Morris, Martina & Handcock, Mark S. & Hunter, David R., 2008. "Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i04).
    3. Handcock, Mark S. & Hunter, David R. & Butts, Carter T. & Goodreau, Steven M. & Morris, Martina, 2008. "statnet: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i01).
    4. Schoen, Martin W. & Moreland-Russell, Sarah & Prewitt, Kim & Carothers, Bobbi J., 2014. "Social network analysis of public health programs to measure partnership," Social Science & Medicine, Elsevier, vol. 123(C), pages 90-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irina Timm & Simone Rapp & Christian Jeuter & Philip Bachert & Markus Reichert & Alexander Woll & Hagen Wäsche, 2021. "Interorganizational Networks in Physical Activity Promotion: A Systematic Review," IJERPH, MDPI, vol. 18(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duxbury, Scott W, 2019. "Mediation and Moderation in Statistical Network Models," SocArXiv 9bs4u, Center for Open Science.
    2. De Nicola, Giacomo & Fritz, Cornelius & Mehrl, Marius & Kauermann, Göran, 2023. "Dependence matters: Statistical models to identify the drivers of tie formation in economic networks," Journal of Economic Behavior & Organization, Elsevier, vol. 215(C), pages 351-363.
    3. Goodreau, Steven M. & Handcock, Mark S. & Hunter, David R. & Butts, Carter T. & Morris, Martina, 2008. "A statnet Tutorial," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 24(i09).
    4. repec:jss:jstsof:24:i09 is not listed on IDEAS
    5. Aliakbar Akbaritabar & Vincent Antonio Traag & Alberto Caimo & Flaminio Squazzoni, 2020. "Italian sociologists: a community of disconnected groups," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 2361-2382, September.
    6. Dang-Pham, Duy & Pittayachawan, Siddhi & Bruno, Vince, 2016. "Impacts of security climate on employees’ sharing of security advice and troubleshooting: Empirical networks," Business Horizons, Elsevier, vol. 59(6), pages 571-584.
    7. Hunter, David R. & Goodreau, Steven M. & Handcock, Mark S., 2013. "ergm.userterms: A Template Package for Extending statnet," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 52(i02).
    8. Khalilzadeh, Jalayer, 2018. "Demonstration of exponential random graph models in tourism studies: Is tourism a means of global peace or the bottom line?," Annals of Tourism Research, Elsevier, vol. 69(C), pages 31-41.
    9. Alex Stivala & Garry Robins & Alessandro Lomi, 2020. "Exponential random graph model parameter estimation for very large directed networks," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-21, January.
    10. Yonghong Ma & Xiaomeng Yang & Sen Qu & Lingkai Kong, 2022. "Research on the formation mechanism of big data technology cooperation networks: empirical evidence from China," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(3), pages 1273-1294, March.
    11. Epskamp, Sacha & Cramer, Angélique O.J. & Waldorp, Lourens J. & Schmittmann, Verena D. & Borsboom, Denny, 2012. "qgraph: Network Visualizations of Relationships in Psychometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i04).
    12. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    13. Knopf, Amelia & Agot, Kawango & Sidle, John & Naanyu, Violet & Morris, Martina, 2015. "Reprint of: “This is the medicine:” A Kenyan community responds to a sexual concurrency reduction intervention," Social Science & Medicine, Elsevier, vol. 125(C), pages 182-191.
    14. Sonia Adam-Ledunois & Sébastien Damart, 2016. "The art of collective "making do"... When silos are gone!," Post-Print hal-01362382, HAL.
    15. John McLevey & Alexander V. Graham & Reid McIlroy-Young & Pierson Browne & Kathryn S. Plaisance, 2018. "Interdisciplinarity and insularity in the diffusion of knowledge: an analysis of disciplinary boundaries between philosophy of science and the sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 331-349, October.
    16. Youyi Bi & Yunjian Qiu & Zhenghui Sha & Mingxian Wang & Yan Fu & Noshir Contractor & Wei Chen, 2021. "Modeling Multi-Year Customers’ Considerations and Choices in China’s Auto Market Using Two-Stage Bipartite Network Analysis," Networks and Spatial Economics, Springer, vol. 21(2), pages 365-385, June.
    17. Han, Lu & Koenig-Archibugi, Mathias & Opsahl, Tore, 2018. "The social network of international health aid," Social Science & Medicine, Elsevier, vol. 206(C), pages 67-74.
    18. Krivitsky, Pavel N., 2017. "Using contrastive divergence to seed Monte Carlo MLE for exponential-family random graph models," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 149-161.
    19. Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
    20. Cody J. Dey & James S. Quinn, 2014. "Individual attributes and self-organizational processes affect dominance network structure in pukeko," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(6), pages 1402-1408.
    21. Xia Cao & Xin Zhang & ZeYu Xing, 2024. "Exploring the formation mechanism of new energy vehicle industry-university-research innovation network: the role of structural, cognitive and relational social capital," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3045-3065, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:12412-12425:d:56760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.