IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v059i13.html
   My bibliography  Save this article

structSSI: Simultaneous and Selective Inference for Grouped or Hierarchically Structured Data

Author

Listed:
  • Sankaran, Kris
  • Holmes, Susan

Abstract

The R package structSSI provides an accessible implementation of two recently developed simultaneous and selective inference techniques: the group Benjamini-Hochberg and hierarchical false discovery rate procedures. Unlike many multiple testing schemes, these methods specifically incorporate existing information about the grouped or hierarchical dependence between hypotheses under consideration while controlling the false discovery rate. Doing so increases statistical power and interpretability. Furthermore, these procedures provide novel approaches to the central problem of encoding complex dependency between hypotheses. We briefly describe the group Benjamini-Hochberg and hierarchical false discovery rate procedures and then illustrate them using two examples, one a measure of ecological microbial abundances and the other a global temperature time series. For both procedures, we detail the steps associated with the analysis of these particular data sets, including establishing the dependence structures, performing the test, and interpreting the results. These steps are encapsulated by R functions, and we explain their applicability to general data sets.

Suggested Citation

  • Sankaran, Kris & Holmes, Susan, 2014. "structSSI: Simultaneous and Selective Inference for Grouped or Hierarchically Structured Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i13).
  • Handle: RePEc:jss:jstsof:v:059:i13
    DOI: http://hdl.handle.net/10.18637/jss.v059.i13
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v059i13/v59i13.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v059i13/structSSI_1.1.tar.gz
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v059i13/v59i13.R
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v059.i13?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoav Benjamini & Abba M. Krieger & Daniel Yekutieli, 2006. "Adaptive linear step-up procedures that control the false discovery rate," Biometrika, Biometrika Trust, vol. 93(3), pages 491-507, September.
    2. John D. Storey & Jonathan E. Taylor & David Siegmund, 2004. "Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 187-205, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Ignatiadis & Wolfgang Huber, 2021. "Covariate powered cross‐weighted multiple testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 720-751, September.
    2. Pratheepa Jeganathan & Susan P. Holmes, 2021. "A Statistical Perspective on the Challenges in Molecular Microbial Biology," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 131-160, June.
    3. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanck, Christoph, 2011. "Now, whose schools are really better (or weaker) than Germany's? A multiple testing approach," Economic Modelling, Elsevier, vol. 28(4), pages 1739-1746, July.
    2. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    3. Gharad Bryan & James J Choi & Dean Karlan, 2021. "Randomizing Religion: the Impact of Protestant Evangelism on Economic Outcomes," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 136(1), pages 293-380.
    4. Joseph Romano & Azeem Shaikh & Michael Wolf, 2008. "Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 417-442, November.
    5. Benoit Duchet & Filippo Ghezzi & Gihan Weerasinghe & Gerd Tinkhauser & Andrea A Kühn & Peter Brown & Christian Bick & Rafal Bogacz, 2021. "Average beta burst duration profiles provide a signature of dynamical changes between the ON and OFF medication states in Parkinson’s disease," PLOS Computational Biology, Public Library of Science, vol. 17(7), pages 1-42, July.
    6. Christina C. Bartenschlager & Michael Krapp, 2015. "Theorie und Methoden multipler statistischer Vergleiche," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(2), pages 107-129, November.
    7. Guo Wenge & Peddada Shyamal, 2008. "Adaptive Choice of the Number of Bootstrap Samples in Large Scale Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-21, March.
    8. Christina C. Bartenschlager & Jens O. Brunner, 2019. "Reaching for the stars: attention to multiple testing problems and method recommendations using simulation for business research," Journal of Business Economics, Springer, vol. 89(4), pages 447-479, June.
    9. Joseph P. Romano & Azeem M. Shaikh & Michael Wolf, 2010. "Hypothesis Testing in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 75-104, September.
    10. Deckers, Thomas & Hanck, Christoph, 2009. "Multiple Testing Techniques in Growth Econometrics," MPRA Paper 17843, University Library of Munich, Germany.
    11. Nik Tuzov & Frederi Viens, 2011. "Mutual fund performance: false discoveries, bias, and power," Annals of Finance, Springer, vol. 7(2), pages 137-169, May.
    12. Habiger, Joshua D. & Adekpedjou, Akim, 2014. "Optimal rejection curves for exact false discovery rate control," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 21-28.
    13. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    14. Döhler, Sebastian, 2018. "A discrete modification of the Benjamini–Yekutieli procedure," Econometrics and Statistics, Elsevier, vol. 5(C), pages 137-147.
    15. Kim, Donggyu & Zhang, Chunming, 2014. "Adaptive linear step-up multiple testing procedure with the bias-reduced estimator," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 31-39.
    16. Andrew Y. Chen, 2022. "Do t-Statistic Hurdles Need to be Raised?," Papers 2204.10275, arXiv.org, revised Apr 2024.
    17. Zhao, Haibing & Fung, Wing Kam, 2016. "A powerful FDR control procedure for multiple hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 60-70.
    18. Haibing Zhao & Xinping Cui, 2020. "Constructing confidence intervals for selected parameters," Biometrics, The International Biometric Society, vol. 76(4), pages 1098-1108, December.
    19. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    20. Joseph P. Romano & Michael Wolf, 2008. "Balanced Control of Generalized Error Rates," IEW - Working Papers 379, Institute for Empirical Research in Economics - University of Zurich.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:059:i13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.