IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v11y2014i3p2764-2779d33827.html
   My bibliography  Save this article

Spatial Environmental Modeling of Autoantibody Outcomes among an African American Population

Author

Listed:
  • Rachel Carroll

    (Department of Public Health Sciences, Medical University of South Carolina, 67 President St, Charleston, SC 29425, USA)

  • Andrew B. Lawson

    (Department of Public Health Sciences, Medical University of South Carolina, 67 President St, Charleston, SC 29425, USA)

  • Delia Voronca

    (Department of Public Health Sciences, Medical University of South Carolina, 67 President St, Charleston, SC 29425, USA)

  • Chawarat Rotejanaprasert

    (Department of Public Health Sciences, Medical University of South Carolina, 67 President St, Charleston, SC 29425, USA)

  • John E. Vena

    (Department of Public Health Sciences, Medical University of South Carolina, 67 President St, Charleston, SC 29425, USA)

  • Claire Marjorie Aelion

    (School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA)

  • Diane L. Kamen

    (Department of Medicine, Division of Rheumatology and Immunology, Medical University of South Carolina, 67 President St, Charleston, SC 29425, USA)

Abstract

In this study of autoimmunity among a population of Gullah African Americans in South Carolina, the links between environmental exposures and autoimmunity (presence of antinuclear antibodies (ANA)) have been assessed. The study population included patients with systemic lupus erythematosus (n = 10), their first degree relatives (n = 61), and unrelated controls (n = 9) where 47.5% (n = 38) were ANA positive. This paper presents the methodology used to model ANA status as a function of individual environmental influences, both self-reported and measured, while controlling for known autoimmunity risk factors. We have examined variable dimension reduction and selection methods in our approach. Following the dimension reduction and selection methods, we fit logistic spatial Bayesian models to explore the relationship between our outcome of interest and environmental exposures adjusting for personal variables. Our analysis also includes a validation “strip” where we have interpolated information from a specific geographic area for a subset of the study population that lives in that vicinity. Our results demonstrate that residential proximity to exposure site is important in this form of analysis. The use of a validation strip network demonstrated that even with small sample numbers some significant exposure-outcome relationships can be detected.

Suggested Citation

  • Rachel Carroll & Andrew B. Lawson & Delia Voronca & Chawarat Rotejanaprasert & John E. Vena & Claire Marjorie Aelion & Diane L. Kamen, 2014. "Spatial Environmental Modeling of Autoantibody Outcomes among an African American Population," IJERPH, MDPI, vol. 11(3), pages 1-16, March.
  • Handle: RePEc:gam:jijerp:v:11:y:2014:i:3:p:2764-2779:d:33827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/11/3/2764/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/11/3/2764/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    2. Scheipl, Fabian, 2011. "spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i14).
    3. Fahrmeir, Ludwig & Kneib, Thomas, 2011. "Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data," OUP Catalogue, Oxford University Press, number 9780199533022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Heuclin & Frédéric Mortier & Catherine Trottier & Marie Denis, 2021. "Bayesian varying coefficient model with selection: An application to functional mapping," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 24-50, January.
    2. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    3. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    4. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    5. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    6. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    7. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    8. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    9. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    10. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    11. Jagannadha Pawan Tamvada, 2015. "The Spatial Distribution of Self-Employment in India: Evidence from Semiparametric Geoadditive Models," Regional Studies, Taylor & Francis Journals, vol. 49(2), pages 300-322, February.
    12. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    13. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    14. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.
    15. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    16. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    17. Paolo Rizzi & Paola Graziano & Antonio Dallara, 2018. "A capacity approach to territorial resilience: the case of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 285-328, March.
    18. Pérez, Claudia & Claveria, Oscar, 2020. "Natural resources and human development: Evidence from mineral-dependent African countries using exploratory graphical analysis," Resources Policy, Elsevier, vol. 65(C).
    19. Damien Rousselière, 2019. "A Flexible Approach to Age Dependence in Organizational Mortality: Comparing the Life Duration for Cooperative and Non-Cooperative Enterprises Using a Bayesian Generalized Additive Discrete Time Survi," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 829-855, December.
    20. Zeynep Ozkok, 2015. "Financial openness and financial development: an analysis using indices," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(5), pages 620-649, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:11:y:2014:i:3:p:2764-2779:d:33827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.