IDEAS home Printed from https://ideas.repec.org/a/jqe/jqenew/v8y2010i1p86-94.html
   My bibliography  Save this article

Modeling Volatility in Emerging Stock Markets Of India And China

Author

Listed:
  • Prashant Joshi

    (Shrimad Rajchandra Institute of Management and Computer Application, Surat)

Abstract

The study investigated the stock market volatility in the emerging stock markets of India and China using daily closing price from 1st January, 2005 to 12th May, 2009. The results detect the presence of non-linearity through BDSL test while conditional Heteroscedasticity is identified through ARCH-LM test. The findings reveal that the GARCH(1,1) model successfully captures nonlinearity and volatility clustering. The analysis suggests that the persistence of volatility in Chinese stock market is more than Indian stock market.

Suggested Citation

  • Prashant Joshi, 2010. "Modeling Volatility in Emerging Stock Markets Of India And China," Journal of Quantitative Economics, The Indian Econometric Society, vol. 8(1), pages 86-94, January.
  • Handle: RePEc:jqe:jqenew:v:8:y:2010:i:1:p:86-94
    as

    Download full text from publisher

    File URL: http://www.jqe.co.in/journals/JQE_v8_n1_2010_p5.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    3. Thierry Ane, 2006. "Short and long term components of volatility in Hong Kong stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(6), pages 439-460.
    4. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    5. Sunil Poshakwale & Victor Murinde, 2001. "Modelling the volatility in East European emerging stock markets: evidence on Hungary and Poland," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 445-456.
    6. T. Ane, 2006. "Short and long term components of volatility in Hong Kong stock returns," Post-Print hal-00170780, HAL.
    7. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumya Ganguly & Amalendu Bhunia, 2022. "Testing volatility and relationship among BRICS stock market returns," SN Business & Economics, Springer, vol. 2(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prashant Joshi, 2014. "Analyzing Performance Of Garch Models In Nse," Working papers 2014-09-16, Voice of Research.
    2. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    3. Yue Fang, 2000. "When Should Time be Continuous? Volatility Modeling and Estimation of High-Frequency Data," Econometric Society World Congress 2000 Contributed Papers 0843, Econometric Society.
    4. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, September.
    5. Anastassios A. Drakos & Georgios P. Kouretas & Leonidas P. Zarangas, 2010. "Forecasting financial volatility of the Athens stock exchange daily returns: an application of the asymmetric normal mixture GARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 331-350.
    6. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    8. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    9. Lee, Yen-Hsien & Hu, Hsu-Ning & Chiou, Jer-Shiou, 2010. "Jump dynamics with structural breaks for crude oil prices," Energy Economics, Elsevier, vol. 32(2), pages 343-350, March.
    10. Jacobsen, Ben & Dannenburg, Dennis, 2003. "Volatility clustering in monthly stock returns," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 479-503, September.
    11. David Feldman & Xin Xu, 2018. "Equilibrium-based volatility models of the market portfolio rate of return (peacock tails or stotting gazelles)," Annals of Operations Research, Springer, vol. 262(2), pages 493-518, March.
    12. Engle, Robert F, 1998. "Macroeconomic Announcements and Volatility of Treasury Futures," University of California at San Diego, Economics Working Paper Series qt7rd4g3bk, Department of Economics, UC San Diego.
    13. Dongweí Su, 2003. "Risk, Return and Regulation in Chinese Stock Markets," World Scientific Book Chapters, in: Chinese Stock Markets A Research Handbook, chapter 3, pages 75-122, World Scientific Publishing Co. Pte. Ltd..
    14. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    15. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.
    16. Denisa Banulescu-Radu & Christophe Hurlin & Bertrand Candelon & Sébastien Laurent, 2016. "Do We Need High Frequency Data to Forecast Variances?," Annals of Economics and Statistics, GENES, issue 123-124, pages 135-174.
    17. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    18. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    19. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    20. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.

    More about this item

    Keywords

    Volatility clustering; nonlinearity; BDSL; GARCH;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jqe:jqenew:v:8:y:2010:i:1:p:86-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: D. M. Nachane or the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tiesoea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.