IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v29y2010i6p556-572.html
   My bibliography  Save this article

Bananas and petrol: further evidence on the forecasting accuracy of the ABS 'headline' and 'underlying' rates of inflation

Author

Listed:
  • Liam J. A. Lenten

    (School of Economics and Finance, La Trobe University, Bundoora, Victoria, Australia)

Abstract

In the light of the still topical nature of 'bananas and petrol' being blamed for driving much of the inflationary pressures in Australia in recent times, the 'headline' and 'underlying' rates of inflation are scrutinised in terms of forecasting accuracy. A general structural time-series modelling strategy is applied to estimate models for alternative types of Consumer Price Index (CPI) measures. From this, out-of-sample forecasts are generated from the various models. The underlying forecasts are subsequently adjusted to facilitate comparison. The Ashley, Granger and Schmalensee (1980) test is then performed to determine whether there is a statistically significant difference between the root mean square errors of the models. The results lend weight to the recent findings of Song (2005) that forecasting models using underlying rates are not systematically inferior to those based on the headline rate. In fact, strong evidence is found that underlying measures produce superior forecasts. Copyright © 2009 John Wiley & Sons, Ltd.

Suggested Citation

  • Liam J. A. Lenten, 2010. "Bananas and petrol: further evidence on the forecasting accuracy of the ABS 'headline' and 'underlying' rates of inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(6), pages 556-572.
  • Handle: RePEc:jof:jforec:v:29:y:2010:i:6:p:556-572
    DOI: 10.1002/for.1152
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.1152
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.1152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mr. Emil Stavrev, 2006. "Measures of Underlying Inflation in the Euro Area: Assessment and Role for Informing Monetary Policy," IMF Working Papers 2006/197, International Monetary Fund.
    2. repec:bla:germec:v:4:y:2003:i::p:269-306 is not listed on IDEAS
    3. Ivan Roberts, 2005. "Underlying Inflation: Concepts, Measurement and Performance," RBA Research Discussion Papers rdp2005-05, Reserve Bank of Australia.
    4. Robert Dixon & G.C. Lim, 2004. "Underlying Inflation in Australia: Are the Existing Measures Satisfactory?," The Economic Record, The Economic Society of Australia, vol. 80(251), pages 373-386, December.
    5. George Kapetanios & Gonzalo Camba-Mendez, 2005. "Forecasting euro area inflation using dynamic factor measures of underlying inflation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(7), pages 491-503.
    6. Ashley, R & Granger, C W J & Schmalensee, R, 1980. "Advertising and Aggregate Consumption: An Analysis of Causality," Econometrica, Econometric Society, vol. 48(5), pages 1149-1167, July.
    7. Juan‐Luis Vega & Mark A. Wynne, 2003. "A First Assessment of Some Measures of Core Inflation for the Euro Area," German Economic Review, Verein für Socialpolitik, vol. 4(3), pages 269-306, August.
    8. Andrea Brischetto & Anthony Richards, 2006. "The Performance of Trimmed Mean Measures of Underlying Inflation," RBA Research Discussion Papers rdp2006-10, Reserve Bank of Australia.
    9. Lei Lei Song, 2005. "Do underlying measures of inflation outperform headline rates? Evidence from Australian data," Applied Economics, Taylor & Francis Journals, vol. 37(3), pages 339-345.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    2. Ivan Roberts, 2005. "Underlying Inflation: Concepts, Measurement and Performance," RBA Research Discussion Papers rdp2005-05, Reserve Bank of Australia.
    3. Mr. Helge Berger & Mr. Thomas Harjes & Mr. Emil Stavrev, 2008. "The ECB’s Monetary Analysis Revisited," IMF Working Papers 2008/171, International Monetary Fund.
    4. Jamie Armour, 2006. "An Evaluation of Core Inflation Measures," Staff Working Papers 06-10, Bank of Canada.
    5. Berger, Helge & Harjes, Thomas & Stavrev, Emil, 2008. "The ECB's monetary analysis revisited," Discussion Papers 2008/14, Free University Berlin, School of Business & Economics.
    6. Atchana Waiquamdee & Pranee Sutthasri & Tientip Subhanij & Surach Tanboon, 2009. "Monetary Policy and Underlying Inflation Pressures: The Essence of Monetary Policy Design," Working Papers 2009-11, Monetary Policy Group, Bank of Thailand.
    7. Henry Bryant & Michael Haigh, 2004. "Bid-ask spreads in commodity futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 923-936.
    8. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    9. Imad Moosa & Kelly Burns, 2014. "Error correction modelling and dynamic specifications as a conduit to outperforming the random walk in exchange rate forecasting," Applied Economics, Taylor & Francis Journals, vol. 46(25), pages 3107-3118, September.
    10. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    11. Zapata, Hector O. & Gil, Jose M., 1999. "Cointegration and causality in international agricultural economics research," Agricultural Economics, Blackwell, vol. 20(1), pages 1-9, January.
    12. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    13. Adrian Armas & Lucy Vallejos & Marco Vega, 2010. "Measurement of price indices used by the central bank of Peru," BIS Papers chapters, in: Bank for International Settlements (ed.), Monetary policy and the measurement of inflation: prices, wages and expectations, volume 49, pages 259-283, Bank for International Settlements.
    14. Fullerton, Thomas M. & Kelley, Brian W., 2008. "El Paso Housing Sector Econometric Forecast Accuracy," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 40(1), pages 385-402, April.
    15. Mark A. Wynne, 2008. "Core inflation: a review of some conceptual issues," Review, Federal Reserve Bank of St. Louis, vol. 90(May), pages 205-228.
    16. Ye, Haichun & Ashley, Richard & Guerard, John, 2015. "Comparing the effectiveness of traditional vs. mechanized identification methods in post-sample forecasting for a macroeconomic Granger causality analysis," International Journal of Forecasting, Elsevier, vol. 31(2), pages 488-500.
    17. Lei Lei Song, 2003. "The Role of the Unit of Analysis in Tax Policy Reform Evaluations," Melbourne Institute Working Paper Series wp2003n29, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    18. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    19. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    20. Rangel, José Gonzalo, 2011. "Macroeconomic news, announcements, and stock market jump intensity dynamics," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1263-1276, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:29:y:2010:i:6:p:556-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.