IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v24y2005i5p353-368.html
   My bibliography  Save this article

Long-term sales forecasting using holt-winters and neural network methods

Author

Listed:
  • Markos Papageorgiou

    (Technical University of Crete, Greece)

  • Apostolos Kotsialos

    (Technical University of Crete, Greece)

  • Antonios Poulimenos

    (Technical University of Crete, Greece)

Abstract

The problem of medium to long-term sales forecasting raises a number of requirements that must be suitably addressed in the design of the employed forecasting methods. These include long forecasting horizons (up to 52 periods ahead), a high number of quantities to be forecasted, which limits the possibility of human intervention, frequent introduction of new articles (for which no past sales are available for parameter calibration) and withdrawal of running articles. The problem has been tackled by use of a damped-trend Holt-Winters method as well as feedforward multilayer neural networks (FMNNs) applied to sales data from two German companies. Copyright © 2005 John Wiley & Sons, Ltd.

Suggested Citation

  • Markos Papageorgiou & Apostolos Kotsialos & Antonios Poulimenos, 2005. "Long-term sales forecasting using holt-winters and neural network methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(5), pages 353-368.
  • Handle: RePEc:jof:jforec:v:24:y:2005:i:5:p:353-368
    DOI: 10.1002/for.943
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.943
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grubb, Howard & Mason, Alexina, 2001. "Long lead-time forecasting of UK air passengers by Holt-Winters methods with damped trend," International Journal of Forecasting, Elsevier, vol. 17(1), pages 71-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
    2. Hong Chen, 2010. "Using Financial and Macroeconomic Indicators to Forecast Sales of Large Development and Construction Firms," The Journal of Real Estate Finance and Economics, Springer, vol. 40(3), pages 310-331, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niamh Callaghan & Richard S. J. Tol, 2013. "UK Tourists, the Great Recession and Irish Tourism Policy," The Economic and Social Review, Economic and Social Studies, vol. 44(1), pages 103-116.
    2. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    3. Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922, July.
    4. Scarpel, Rodrigo Arnaldo, 2013. "Forecasting air passengers at São Paulo International Airport using a mixture of local experts model," Journal of Air Transport Management, Elsevier, vol. 26(C), pages 35-39.
    5. Gulseven Osman, 2014. "Multidimensional Analysis of Monthly Stock Market Returns," Scientific Annals of Economics and Business, Sciendo, vol. 61(2), pages 181-196, December.
    6. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    7. Dey Tirtha, Sudipta & Bhowmik, Tanmoy & Eluru, Naveen, 2022. "An airport level framework for examining the impact of COVID-19 on airline demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 169-181.
    8. Scarpel, Rodrigo Arnaldo, 2014. "A demand trend change early warning forecast model for the city of São Paulo multi-airport system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 65(C), pages 23-32.
    9. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    10. Fildes, Robert & Bretschneider, Stuart & Collopy, Fred & Lawrence, Michael & Stewart, Doug & Winklhofer, Heidi & Mentzer, John T. & Moon, Mark A., 2003. "Researching Sales Forecasting Practice: Commentaries and authors' response on "Conducting a Sales Forecasting Audit" by M.A. Moon, J.T. Mentzer & C.D. Smith," International Journal of Forecasting, Elsevier, vol. 19(1), pages 27-42.
    11. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    12. Dewansh Raheja & R. Guo & S. M. Phyoe & Y. X. Lee & Z. W. Zhong, 2017. "Air Traffic and Economic Output: Projections for ASEAN," International Journal of Business and Administrative Studies, Professor Dr. Bahaudin G. Mujtaba, vol. 3(3), pages 92-99.
    13. Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
    14. Nicholas J. Cox, 2009. "Stata tip 76: Separating seasonal time series," Stata Journal, StataCorp LP, vol. 9(2), pages 321-326, June.
    15. Yanbing Li & Wei Zhao & Huilong Fan, 2022. "A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    16. Guo Rui & Zhong Zhaowei, 2017. "Forecasting the Air Passenger Volume in Singapore: An Evaluation of TimeSeries Models," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 3(3), pages 117-123.
    17. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    18. Yuewei Liu & Shenghui Zhang & Xuejun Chen & Jianzhou Wang, 2018. "Artificial Combined Model Based on Hybrid Nonlinear Neural Network Models and Statistics Linear Models—Research and Application for Wind Speed Forecasting," Sustainability, MDPI, vol. 10(12), pages 1-30, December.
    19. Samagaio, António & Wolters, Mark, 2010. "Comparative analysis of government forecasts for the Lisbon Airport," Journal of Air Transport Management, Elsevier, vol. 16(4), pages 213-217.
    20. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:24:y:2005:i:5:p:353-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.