IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1754-d820643.html
   My bibliography  Save this article

A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction

Author

Listed:
  • Yanbing Li

    (School of Cyber Science and Engineering, College of Information Science and Engineering, XinJiang University, Urmuqi 830046, China
    These authors contributed equally to this work.)

  • Wei Zhao

    (School of Computer Science and Engineering, Central South University, Changsha 410075, China
    These authors contributed equally to this work.)

  • Huilong Fan

    (School of Computer Science and Engineering, Central South University, Changsha 410075, China)

Abstract

The accuracy of short-term traffic flow prediction is one of the important issues in the construction of smart cities, and it is an effective way to solve the problem of traffic congestion. Most previous studies could not effectively mine the potential relationship between the temporal and spatial dimensions of traffic data flow. Due to the large variability in the traffic flow data of road conditions, we analyzed it with “dynamic”, using a dynamic-aware graph neural network model for the hidden relationships between space-time in the deep learning segment. In this paper, we propose a dynamic perceptual graph neural network model for the temporal and spatial hidden relationships of deep learning segments. This model mixes temporal features and spatial features with graphs and expresses them. The temporal features and spatial features are connected to each other to learn potential relationships, so as to more accurately predict the traffic speed in the future time period, we performed experiments on real data sets and compared with some baseline models. The experiments show that the method proposed in this paper has certain advantages.

Suggested Citation

  • Yanbing Li & Wei Zhao & Huilong Fan, 2022. "A Spatio-Temporal Graph Neural Network Approach for Traffic Flow Prediction," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1754-:d:820643
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1754/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1754/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grubb, Howard & Mason, Alexina, 2001. "Long lead-time forecasting of UK air passengers by Holt-Winters methods with damped trend," International Journal of Forecasting, Elsevier, vol. 17(1), pages 71-82.
    2. Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.
    3. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    2. Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
    3. Niamh Callaghan & Richard S. J. Tol, 2013. "UK Tourists, the Great Recession and Irish Tourism Policy," The Economic and Social Review, Economic and Social Studies, vol. 44(1), pages 103-116.
    4. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    5. Wang, Sen & Gao, Yi, 2021. "A literature review and citation analyses of air travel demand studies published between 2010 and 2020," Journal of Air Transport Management, Elsevier, vol. 97(C).
    6. Coogan, Samuel & Flores, Christopher & Varaiya, Pravin, 2017. "Traffic predictive control from low-rank structure," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 1-22.
    7. Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
    8. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    9. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    10. Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922, July.
    11. Scarpel, Rodrigo Arnaldo, 2013. "Forecasting air passengers at São Paulo International Airport using a mixture of local experts model," Journal of Air Transport Management, Elsevier, vol. 26(C), pages 35-39.
    12. Ng, ManWo, 2012. "Synergistic sensor location for link flow inference without path enumeration: A node-based approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 781-788.
    13. Mínguez, R. & Sánchez-Cambronero, S. & Castillo, E. & Jiménez, P., 2010. "Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 282-298, February.
    14. Beatriz Molina Serrano & Nicoleta González-Cancelas & Francisco Soler-Flores & Samir Awad-Nuñez & Alberto Camarero Orive, 2018. "Use of Bayesian Networks to Analyze Port Variables in Order to Make Sustainable Planning and Management Decision," Logistics, MDPI, vol. 2(1), pages 1-16, January.
    15. Gulseven Osman, 2014. "Multidimensional Analysis of Monthly Stock Market Returns," Scientific Annals of Economics and Business, Sciendo, vol. 61(2), pages 181-196, December.
    16. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
    17. J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
    18. Dey Tirtha, Sudipta & Bhowmik, Tanmoy & Eluru, Naveen, 2022. "An airport level framework for examining the impact of COVID-19 on airline demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 169-181.
    19. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    20. Fu, Hao & Lam, William H.K. & Shao, Hu & Ma, Wei & Chen, Bi Yu & Ho, H.W., 2022. "Optimization of multi-type sensor locations for simultaneous estimation of origin-destination demands and link travel times with covariance effects," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 19-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1754-:d:820643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.