IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v21y2002i3p193-206.html
   My bibliography  Save this article

The Homogeneity Restriction and Forecasting Performance of VAR-Type Demand Systems: An Empirical Examination of US Meat Consumption

Author

Listed:
  • Wang, Zijun
  • Bessler, David A

Abstract

This paper compares the forecast performance of vector-autoregression-type (VAR) demand systems with and without imposing the homogeneity restriction in the cointegration space. US meat consumption (beef, poultry and pork) data are studied. One up to four-steps-ahead forecasts are generated from both the theoretically restricted and unrestricted models. A modified Diebold-Mariano test of the equality of mean squared forecast errors (MSFE) and a forecast encompassing test are applied in forecast evaluation. Our findings suggest that the imposition of the homogeneity restriction tends to improve the forecast accuracy when the restriction is not rejected. The evidence is mixed when the restriction is rejected. Copyright © 2002 by John Wiley & Sons, Ltd.

Suggested Citation

  • Wang, Zijun & Bessler, David A, 2002. "The Homogeneity Restriction and Forecasting Performance of VAR-Type Demand Systems: An Empirical Examination of US Meat Consumption," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(3), pages 193-206, April.
  • Handle: RePEc:jof:jforec:v:21:y:2002:i:3:p:193-206
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 671-690.
    2. Engle, R. F. & Granger, C. W. J. & Hylleberg, S. & Lee, H. S., 1993. "The Japanese consumption function," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 275-298.
    3. Ng, Serena, 1995. "Testing for Homogeneity in Demand Systems When the Regressors Are Nonstationary," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 147-163, April-Jun.
    4. Lin, Jin-Lung & Tsay, Ruey S, 1996. "Co-integration Constraint and Forecasting: An Empirical Examination," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 519-538, Sept.-Oct.
    5. Marcus Chambers & K. Ben Nowman, 1997. "Forecasting with the almost ideal demand system: evidence from some alternative dynamic specifications," Applied Economics, Taylor & Francis Journals, vol. 29(7), pages 935-943.
    6. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    7. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    8. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    9. James S. Eales & Laurian J. Unnevehr, 1988. "Demand for Beef and Chicken Products: Separability and Structural Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(3), pages 521-532.
    10. Mittelhammer, Ronald C. & Shi, Hongqi & Wahl, Thomas I., 1996. "Accounting For Aggregation Bias In Almost Ideal Demand Systems," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 21(2), pages 1-16, December.
    11. de Crombrugghe, Denis & Palm, Franz C & Urbain, Jean-Pierre, 1997. "Statistical Demand Functions for Food in the USA and the Netherlands," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(5), pages 615-637, Sept.-Oct.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    14. Anderson, Heather M & Vahid, Farshid, 1997. "On the Correspondence between Individual and Aggregate Food Consumption Functions: Evidence from the USA and the Netherlands: Reply," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(5), pages 503-507, Sept.-Oct.
    15. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    16. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    17. Clements, Michael P & Hendry, David F, 1995. "Forecasting in Cointegration Systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 127-146, April-Jun.
    18. Anderson, Heather M & Vahid, Farshid, 1997. "On the Correspondence between Individual and Aggregate Food Consumption Functions: Evidence from the USA and the Netherlands," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(5), pages 477-498, Sept.-Oct.
    19. Engle, R. F. & Granger, C. W. J. & Hallman, J. J., 1989. "Merging short-and long-run forecasts : An application of seasonal cointegration to monthly electricity sales forecasting," Journal of Econometrics, Elsevier, vol. 40(1), pages 45-62, January.
    20. de Crombrugghe, Denis & Palm, Franz C & Urbain, Jean-Pierre, 1997. "Statistical Demand Functions for Food in the USA and the Netherlands: Reply," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(5), pages 643-645, Sept.-Oct.
    21. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    22. Chambers, Marcus J., 1990. "Forecasting with demand systems : A comparative study," Journal of Econometrics, Elsevier, vol. 44(3), pages 363-376, June.
    23. Kunst, Robert M, 1993. "Seasonal Cointegration, Common Seasonals, and Forecasting Seasonal Series," Empirical Economics, Springer, vol. 18(4), pages 761-776.
    24. Terry L. Kastens & Gary W. Brester, 1996. "Model Selection and Forecasting Ability of Theory-Constrained Food Demand Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 301-312.
    25. Hoffman, Dennis L & Rasche, Robert H, 1996. "Assessing Forecast Performance in a Cointegrated System," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 495-517, Sept.-Oct.
    26. Hall, Anthony D & Anderson, Heather M & Granger, Clive W J, 1992. "A Cointegration Analysis of Treasury Bill Yields," The Review of Economics and Statistics, MIT Press, vol. 74(1), pages 116-126, February.
    27. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mario Mazzocchi & Davide Delle Monache & Alexandra Lobb, 2006. "A structural time series approach to modelling multiple and resurgent meat scares in Italy," Applied Economics, Taylor & Francis Journals, vol. 38(14), pages 1677-1688.
    2. Wang, Zijun & Bessler, David A., 2004. "Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination," International Journal of Forecasting, Elsevier, vol. 20(4), pages 683-695.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    2. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    3. Zijun Wang & David A. Bessler, 2003. "Forecast evaluations in meat demand analysis," Agribusiness, John Wiley & Sons, Ltd., vol. 19(4), pages 505-523.
    4. Wang, Zijun & Bessler, David A., 2004. "Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination," International Journal of Forecasting, Elsevier, vol. 20(4), pages 683-695.
    5. Clements, Michael P., 2016. "Long-run restrictions and survey forecasts of output, consumption and investment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 614-628.
    6. Hina, Hafsa & Qayyum, Abdul, 2015. "Exchange Rate Determination and Out of Sample Forecasting: Cointegration Analysis," MPRA Paper 61997, University Library of Munich, Germany.
    7. Dreger, Christian & Wolters, Jürgen, 2014. "Money demand and the role of monetary indicators in forecasting euro area inflation," International Journal of Forecasting, Elsevier, vol. 30(2), pages 303-312.
    8. Guillén, Osmani Teixeira & Hecq, Alain & Issler, João Victor & Saraiva, Diogo, 2015. "Forecasting multivariate time series under present-value model short- and long-run co-movement restrictions," International Journal of Forecasting, Elsevier, vol. 31(3), pages 862-875.
    9. Kremer, Manfred, 1999. "Die Kapitalmarktzinsen in Deutschland und den USA: Wie eng ist der Zinsverbund? Eine Anwendung der multivariaten Kointegrationsanalyse," Discussion Paper Series 1: Economic Studies 1999,02, Deutsche Bundesbank.
    10. Kosei Fukuda, 2011. "Cointegration rank switching model: an application to forecasting interest rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(5), pages 509-522, August.
    11. Lance J. Bachmeier & Norman R. Swanson, 2005. "Predicting Inflation: Does The Quantity Theory Help?," Economic Inquiry, Western Economic Association International, vol. 43(3), pages 570-585, July.
    12. Reimers, Hans-Eggert, 1997. "Forecasting of seasonal cointegrated processes," International Journal of Forecasting, Elsevier, vol. 13(3), pages 369-380, September.
    13. Hafsa Hina & Abdul Qayyum, 2015. "Re-estimation of Keynesian Model by Considering Critical Events and Multiple Cointegrating Vectors," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 54(2), pages 123-145.
    14. Hina, Hafsa & Qayyum, Abdul, 2013. "Estimation of Keynesian Exchange Rate Model of Pakistan by Considering Critical Events and Multiple Cointegrating Vectors," MPRA Paper 52611, University Library of Munich, Germany.
    15. Mark E. Wohar & David E. Rapach, 2007. "Forecasting the recent behavior of US business fixed investment spending: an analysis of competing models This is a significantly revised version of our previous paper, 'Forecasting US Business Fixed ," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 33-51.
    16. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    17. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    18. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    19. Barakchian , Seyed Mahdi, 2012. "Implications of Cointegration for Forecasting: A Review and an Empirical Analysis," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 7(1), pages 87-118, October.
    20. Reimers, Hans-Eggert, 2002. "Analysing Divisia Aggregates for the Euro Area," Discussion Paper Series 1: Economic Studies 2002,13, Deutsche Bundesbank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:21:y:2002:i:3:p:193-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.