IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v225y2005i5p567-583.html
   My bibliography  Save this article

Microdata Disclosure Control by Resampling - Effects on Regression Results

Author

Listed:
  • Gottschalk Sandra

    (Centre for European Economic Research (ZEW), L 7, 1, D-68161 Mannheim, Germany)

Abstract

Nonparametric resampling is a method for generating synthetic microdata and is introduced as a procedure for microdata disclosure limitation. Theoretically, re-identification of individuals or firms is not possible with synthetic data. The resampling procedure creates datasets - the resample - which nearly have the same empirical cumulative distribution functions as the original survey data and thus permit econometricians to calculate meaningful regression results. The idea of nonparametric resampling, especially, is to draw from univariate or multivariate empirical distribution functions without having to estimate these explicitly. Until now, the resampling procedure shown here has only been applicable to variables with continuous distribution functions. Monte Carlo simulations and applications with data from the Mannheim Innovation Panel show that results of linear and nonlinear regression analyses can be reproduced quite precisely by nonparametric resamples. A univariate and a multivariate resampling version are examined. The univariate version as well as the multivariate version which is using the correlation structure of the original data as a scaling instrument turn out to be able to retain the coefficients of model estimations. Furthermore, multivariate resampling best reproduces regression results if all variables are anonymised.

Suggested Citation

  • Gottschalk Sandra, 2005. "Microdata Disclosure Control by Resampling - Effects on Regression Results," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(5), pages 567-583, October.
  • Handle: RePEc:jns:jbstat:v:225:y:2005:i:5:p:567-583
    DOI: 10.1515/jbnst-2005-0506
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2005-0506
    Download Restriction: no

    File URL: https://libkey.io/10.1515/jbnst-2005-0506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    2. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    3. Almus, Matthias & Engel, Dirk & Prantl, Susanne, 2000. "The Mannheim Foundation Panels of the Centre for European Economic Research (ZEW)," ZEW Dokumentationen 00-02, ZEW - Leibniz Centre for European Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gottschalk, Sandra, 2013. "The Research Data Centre of the Centre for European Economic Research (ZEW-FDZ)," ZEW Discussion Papers 13-051, ZEW - Leibniz Centre for European Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    2. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    3. Bolancé, Catalina & Guillén, Montserrat & Pinquet, Jean, 2008. "On the link between credibility and frequency premium," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 209-213, October.
    4. Creemers, An & Aerts, Marc & Hens, Niel & Molenberghs, Geert, 2012. "A nonparametric approach to weighted estimating equations for regression analysis with missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 100-113, January.
    5. Geweke, J. & Joel Horowitz & Pesaran, M.H., 2006. "Econometrics: A Bird’s Eye View," Cambridge Working Papers in Economics 0655, Faculty of Economics, University of Cambridge.
    6. Néstor Duch-Brown & José García-Quevedo & Daniel Montolio, 2011. "The link between public support and private R&D effort: What is the optimal subsidy?," Working Papers XREAP2011-09, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    7. Austan Goolsbee & David B. Gross, 1997. "Estimating Adjustment Costs with Data on Heterogeneous Capital Goods," NBER Working Papers 6342, National Bureau of Economic Research, Inc.
    8. Keith Vorkink & Douglas J. Hodgson & Oliver Linton, 2002. "Testing the capital asset pricing model efficiently under elliptical symmetry: a semiparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 617-639.
    9. Das, J.W.M. & Dominitz, J. & van Soest, A.H.O., 1997. "Comparing Predictions and Outcomes : Theory and Application to Income Changes," Other publications TiSEM 6eef11dd-0ae4-4673-b8c0-2, Tilburg University, School of Economics and Management.
    10. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    11. Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. Townsend, John P. & Brorsen, B. Wade, 2000. "Cost Of Forward Contracting Hard Red Winter Wheat," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(1), pages 1-6, April.
    13. Simon J. Evenett & Wolfgang Keller, 2002. "On Theories Explaining the Success of the Gravity Equation," Journal of Political Economy, University of Chicago Press, vol. 110(2), pages 281-316, April.
    14. J. B. Engberg & T. Kim, "undated". "Person or Place? Parametric and semiparametric estimates of intrametropolitan earnings variation," Institute for Research on Poverty Discussion Papers 1089-96, University of Wisconsin Institute for Research on Poverty.
    15. Blow, Laura & Crawford, Ian, 2002. "A nonparametric method for valuing new goods," Working Paper Series 143, European Central Bank.
    16. Lewbel, Arthur & McFadden, Daniel & Linton, Oliver, 2011. "Estimating features of a distribution from binomial data," Journal of Econometrics, Elsevier, vol. 162(2), pages 170-188, June.
    17. Jean-Yves Duclos & Paul Makdissi & Abdelkrim Araar, 2009. "Pro-Poor Tax reforms, with an Application to Mexico," Working Papers 0907E, University of Ottawa, Department of Economics.
    18. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    19. Yun, Myeong-Su, 1999. "Generalized Selection Bias and The Decomposition of Wage Differentials," IZA Discussion Papers 69, Institute of Labor Economics (IZA).
    20. Richard Blundell & Frank Windmeijer, 2000. "Identifying demand for health resources using waiting times information," Health Economics, John Wiley & Sons, Ltd., vol. 9(6), pages 465-474, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:225:y:2005:i:5:p:567-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.