IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2016-29-3.html
   My bibliography  Save this article

The Interplay Between Conformity and Anticonformity and its Polarizing Effect on Society

Author

Listed:

Abstract

Simmering debates leading to polarization are observed in many domains. Although empirical findings show a strong correlation between this phenomenon and modularity of a social network, still little is known about the actual mechanisms driving communities to conflicting opinions. In this paper, we used an agent-based model to check if the polarization may be induced by a competition between two types of social response: conformity and anticonformity. The proposed model builds on the q-voter model (Castellano et al, 2009b) and uses a double-clique topology in order to capture segmentation of a community. Our results indicate that the interplay between intra-clique conformity and inter-clique anticonformity may indeed lead to a bi-polarized state of the entire system. We have found a dynamic phase transition controlled by the fraction L of negative cross-links between cliques. In the regime of small values of L the system is able to reach the total positive consensus. If the values of L are large enough, anticonformity takes over and the system always ends up in a polarized stated. Putting it the other way around, the segmentation of the network is not a sufficient condition for the polarization to appear. A suitable level of antagonistic interactions between segments is required to arrive at a polarized steady state within our model.

Suggested Citation

  • Patryk Siedlecki & Janusz SzwabiÅ„ski & Tomasz Weron, 2016. "The Interplay Between Conformity and Anticonformity and its Polarizing Effect on Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-9.
  • Handle: RePEc:jas:jasssj:2016-29-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/19/4/9/9.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galam, Serge & Jacobs, Frans, 2007. "The role of inflexible minorities in the breaking of democratic opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 366-376.
    2. Galam, Serge, 2004. "Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 453-460.
    3. Zeev Maoz, 2006. "Network Polarization, Network Interdependence, and International Conflict, 1816–2002," Journal of Peace Research, Peace Research Institute Oslo, vol. 43(4), pages 391-411, July.
    4. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mirosław Lachowicz & Henryk Leszczyński, 2020. "Modeling Asymmetric Interactions in Economy," Mathematics, MDPI, vol. 8(4), pages 1-14, April.
    2. Patrick Mellacher, 2021. "Opinion Dynamics with Conflicting Interests," Papers 2111.09408, arXiv.org.
    3. Rafał Apriasz & Tyll Krueger & Grzegorz Marcjasz & Katarzyna Sznajd-Weron, 2016. "The Hunt Opinion Model—An Agent Based Approach to Recurring Fashion Cycles," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-19, November.
    4. Fabian Dvorak & Urs Fischbacher & Katrin Schmelz, 2020. "Incentives for Conformity and Anticonformity," TWI Research Paper Series 122, Thurgauer Wirtschaftsinstitut, Universität Konstanz.
    5. Jędrzejewski, Arkadiusz & Sznajd-Weron, Katarzyna, 2018. "Impact of memory on opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 306-315.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    2. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    3. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    4. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
    5. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    6. F. Jacobs & S. Galam, 2019. "Two-Opinions-Dynamics Generated By Inflexibles And Non-Contrarian And Contrarian Floaters," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-30, June.
    7. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    8. Czaplicka, Agnieszka & Charalambous, Christos & Toral, Raul & San Miguel, Maxi, 2022. "Biased-voter model: How persuasive a small group can be?," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Ding, Fei & Liu, Yun & Shen, Bo & Si, Xia-Meng, 2010. "An evolutionary game theory model of binary opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1745-1752.
    10. Alvarez, Emiliano & Brida, Juan Gabriel, 2019. "What about the others? Consensus and equilibria in the presence of self-interest and conformity in social groups," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 285-298.
    11. Serge Galam, 2011. "Market efficiency, anticipation and the formation of bubbles-crashes," Papers 1106.1577, arXiv.org.
    12. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    13. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    14. Serge Galam, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Papers 1601.02990, arXiv.org.
    15. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    16. Galam, Serge, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 209-217.
    17. Galam, Serge, 2011. "Collective beliefs versus individual inflexibility: The unavoidable biases of a public debate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3036-3054.
    18. Poindron, Alexis, 2021. "A general model of binary opinions updating," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 52-76.
    19. Braha, Dan & de Aguiar, Marcus A. M., 2018. "Voting contagion: Modeling and analysis of a century of U.S. presidential elections," SocArXiv mzxnr, Center for Open Science.
    20. Fan, Kangqi & Pedrycz, Witold, 2017. "Evolution of public opinions in closed societies influenced by broadcast media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 53-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2016-29-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.