IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005732.html
   My bibliography  Save this article

Biased-voter model: How persuasive a small group can be?

Author

Listed:
  • Czaplicka, Agnieszka
  • Charalambous, Christos
  • Toral, Raul
  • San Miguel, Maxi

Abstract

We study the voter model dynamics in the presence of confidence and bias. We assume two types of voters. Unbiased voters whose confidence is indifferent to the state of the voter and biased voters whose confidence is biased towards a common fixed preferred state. We study the problem analytically on the complete graph using mean field theory and on an Erdős-Rényi random network topology using the pair approximation, where we assume that the network of interactions topology is independent of the type of voters. We find that for the case of a random initial setup, and for sufficiently large number of voters N, the time to consensus increases proportionally to log(N)/γv, with γ the fraction of biased voters and v the parameter quantifying the bias of the voters (v = 0 no bias). We verify our analytical results through numerical simulations. We study this model on a topology of the network of interactions depending on the bias, and examine two distinct, global average-degree preserving strategies (model I and model II) to obtain such random topologies starting from the random topology independent of bias case as the initial setup. Keeping all other parameters constant, in model I, μBU, the average number of links among biased (B) and unbiased (U) voters is varied at the expense of μUU and μBB, i.e. the average number of links among only unbiased and biased voters respectively. In model II, μBU is kept constant, while μBB is varied at the expense of μUU. We find that if the agents follow the strategy described by model II, they can achieve a significant reduction in the time to reach consensus as well as an increment in the probability to reach consensus to the preferred state. Hence, persuasiveness of the biased group depends on how well its members are connected among each other, compared to how well the members of the unbiased group are connected among each other.

Suggested Citation

  • Czaplicka, Agnieszka & Charalambous, Christos & Toral, Raul & San Miguel, Maxi, 2022. "Biased-voter model: How persuasive a small group can be?," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005732
    DOI: 10.1016/j.chaos.2022.112363
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. M. Patriarca & X. Castelló & J. R. Uriarte & V. M. Eguíluz & M. San Miguel, 2012. "Modeling Two-Language Competition Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(03n04), pages 1-24.
    3. F. Slanina & H. Lavicka, 2003. "Analytical results for the Sznajd model of opinion formation," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 35(2), pages 279-288, September.
    4. Galam, Serge, 2004. "Contrarian deterministic effects on opinion dynamics: “the hung elections scenario”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 453-460.
    5. Galam, Serge & Jacobs, Frans, 2007. "The role of inflexible minorities in the breaking of democratic opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 366-376.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grabowski, A. & Kosiński, R.A., 2006. "Ising-based model of opinion formation in a complex network of interpersonal interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(2), pages 651-664.
    2. Zhao, Laijun & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 987-994.
    3. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    4. Serge Galam, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Papers 1601.02990, arXiv.org.
    5. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    6. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    7. Fan, Kangqi & Pedrycz, Witold, 2016. "Opinion evolution influenced by informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 431-441.
    8. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    9. Galam, Serge, 2010. "Public debates driven by incomplete scientific data: The cases of evolution theory, global warming and H1N1 pandemic influenza," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3619-3631.
    10. Khalil, Nagi & Toral, Raúl, 2019. "The noisy voter model under the influence of contrarians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 81-92.
    11. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    12. F. Jacobs & S. Galam, 2019. "Two-Opinions-Dynamics Generated By Inflexibles And Non-Contrarian And Contrarian Floaters," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-30, June.
    13. Qian, Shen & Liu, Yijun & Galam, Serge, 2015. "Activeness as a key to counter democratic balance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 187-196.
    14. Patryk Siedlecki & Janusz Szwabiński & Tomasz Weron, 2016. "The Interplay Between Conformity and Anticonformity and its Polarizing Effect on Society," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(4), pages 1-9.
    15. Galam, Serge, 2016. "The invisible hand and the rational agent are behind bubbles and crashes," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 209-217.
    16. Grabowski, Andrzej, 2009. "Opinion formation in a social network: The role of human activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 961-966.
    17. Galam, Serge, 2011. "Collective beliefs versus individual inflexibility: The unavoidable biases of a public debate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(17), pages 3036-3054.
    18. Poindron, Alexis, 2021. "A general model of binary opinions updating," Mathematical Social Sciences, Elsevier, vol. 109(C), pages 52-76.
    19. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    20. Braha, Dan & de Aguiar, Marcus A. M., 2018. "Voting contagion: Modeling and analysis of a century of U.S. presidential elections," SocArXiv mzxnr, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.