IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v606y2022ics0378437122006239.html
   My bibliography  Save this article

Propagation of measurement error in opinion dynamics models: The case of the Deffuant model

Author

Listed:
  • Carpentras, Dino
  • Quayle, Michael

Abstract

Opinion dynamics models have an enormous potential for studying current phenomena such as vaccine hesitancy or diffusion of fake news. Unfortunately, to date, most of the models have little to no empirical validation. One major problem in testing these models against real-world data relates to the difficulties in measuring opinions in ways that map directly to representations in models. Indeed, measuring opinions is a complex process and presents more types of measurement error than just classical random noise. Thus, it is crucial to know how these different error types may affect the model’s predictions. In this work, we analyze this relationship in the Deffuant model as an example. Starting from the psychometrics literature, we first discuss how opinion measurements are affected by three types of errors: random noise, binning, and distortions (i.e. uneven intervals between scale points). While the first two are known to most of the scientific community, the third one is mostly unknown outside psychometrics. Because of that, we highlight the nature and peculiarities of each of these measurement errors. By simulating these types of error, we show that the Deffuant model is robust to binning but not to noise and distortions. Indeed, if a scale has 4 or more points (like most self-report scales), binning has almost no effect on the final predictions. However, prediction error increases almost linearly with random noise, up to a maximum error of 40%. After reaching this value, increasing the amount of noise does not worsen the prediction. Distortions are most problematic, reaching a maximum prediction error of 80%. Error propagation is already established in other fields, such as statistics and engineering. We believe its application in opinion dynamics will contribute to the expansion and development of this field. Indeed, as we show here, it allows researchers to test models’ reliability and prediction quality even before testing the model against real world data.

Suggested Citation

  • Carpentras, Dino & Quayle, Michael, 2022. "Propagation of measurement error in opinion dynamics models: The case of the Deffuant model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
  • Handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006239
    DOI: 10.1016/j.physa.2022.127993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122006239
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Károly Takács & Andreas Flache & Michael Mäs, 2016. "Discrepancy and Disliking Do Not Induce Negative Opinion Shifts," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-21, June.
    2. Guus ten Broeke & George van Voorn & Arend Ligtenberg, 2016. "Which Sensitivity Analysis Method Should I Use for My Agent-Based Model?," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(1), pages 1-5.
    3. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    4. Pawel Sobkowicz, 2018. "Opinion Dynamics Model Based on Cognitive Biases of Complex Agents," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(4), pages 1-8.
    5. Dan Braha & Marcus A M de Aguiar, 2017. "Voting contagion: Modeling and analysis of a century of U.S. presidential elections," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-30, May.
    6. Peter Duggins, 2017. "A Psychologically-Motivated Model of Opinion Change with Applications to American Politics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-13.
    7. Levene, Mark & Fenner, Trevor, 2021. "A stochastic differential equation approach to the analysis of the 2017 and 2019 UK general election polls," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1227-1234.
    8. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    9. Andreas Flache & Michael Mäs & Thomas Feliciani & Edmund Chattoe-Brown & Guillaume Deffuant & Sylvie Huet & Jan Lorenz, 2017. "Models of Social Influence: Towards the Next Frontiers," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    3. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    4. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    5. Cui, Peng-Bi, 2023. "Exploring the foundation of social diversity and coherence with a novel attraction–repulsion model framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    6. Sven Banisch & Eckehard Olbrich, 2021. "An Argument Communication Model of Polarization and Ideological Alignment," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(1), pages 1-1.
    7. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    8. Deffuant, Guillaume & Roubin, Thibaut, 2023. "Emergence of group hierarchy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
    9. Deffuant, Guillaume & Roubin, Thibaut, 2022. "Do interactions among unequal agents undermine those of low status?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    10. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    11. Boschi, Gioia & Cammarota, Chiara & Kühn, Reimer, 2021. "Opinion dynamics with emergent collective memory: The impact of a long and heterogeneous news history," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    12. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    13. Andreas Flache, 2018. "About Renegades And Outgroup Haters: Modeling The Link Between Social Influence And Intergroup Attitudes," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-32, September.
    14. Takesue, Hirofumi, 2023. "Relative opinion similarity leads to the emergence of large clusters in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    15. Kozitsin, Ivan V., 2024. "Optimal control in opinion dynamics models: diversity of influence mechanisms and complex influence hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    16. Christian Ganser & Marc Keuschnigg, 2018. "Social Influence Strengthens Crowd Wisdom Under Voting," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-23, September.
    17. Luo, Yun & Li, Yuke & Sun, Chudi & Cheng, Chun, 2022. "Adapted Deffuant–Weisbuch model with implicit and explicit opinions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    18. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    19. Rytis Kazakeviv{c}ius & Aleksejus Kononovicius, 2023. "Anomalous diffusion and long-range memory in the scaled voter model," Papers 2301.08088, arXiv.org, revised Feb 2023.
    20. Thomas Feliciani & Andreas Flache & Michael Mäs, 2021. "Persuasion without polarization? Modelling persuasive argument communication in teams with strong faultlines," Computational and Mathematical Organization Theory, Springer, vol. 27(1), pages 61-92, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.