IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2015-73-2.html
   My bibliography  Save this article

Transitions Between Homophilic and Heterophilic Modes of Cooperation

Author

Listed:

Abstract

Cooperation is ubiquitous in biological and social systems. Previous studies revealed that a preference toward similar appearance promotes cooperation, a phenomenon called tag-mediated cooperation or communitarian cooperation. This effect is enhanced when a spatial structure is incorporated, because space allows agents sharing an identical tag to regroup to form locally cooperative clusters. In spatially distributed settings, one can also consider migration of organisms, which has a potential to further promote evolution of cooperation by facilitating spatial clustering. However, it has not yet been considered in spatial tag-mediated cooperation models. Here we show, using computer simulations of a spatial model of evolutionary games with organismal migration, that tag-based segregation and homophilic cooperation arise for a wide range of parameters. In the meantime, our results also show another evolutionarily stable outcome, where a high level of heterophilic cooperation is maintained in spatially well-mixed patterns. We found that these two different forms of tag-mediated cooperation appear alternately as the parameter for temptation to defect is increased.

Suggested Citation

  • Genki Ichinose & Masaya Saito & Hiroki Sayama & Hugues Bersini, 2015. "Transitions Between Homophilic and Heterophilic Modes of Cooperation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-3.
  • Handle: RePEc:jas:jasssj:2015-73-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/18/4/3/3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilbert Roberts & Thomas N. Sherratt, 2002. "Does similarity breed cooperation?," Nature, Nature, vol. 418(6897), pages 499-500, August.
    2. Vincent A. A. Jansen & Minus van Baalen, 2006. "Altruism through beard chromodynamics," Nature, Nature, vol. 440(7084), pages 663-666, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hong & Ye, Hang, 2016. "Role of perception cost in tag-mediated cooperation," Applied Mathematics and Computation, Elsevier, vol. 279(C), pages 76-89.
    2. Justin P Bruner, 2015. "Diversity, tolerance, and the social contract," Politics, Philosophy & Economics, , vol. 14(4), pages 429-448, November.
    3. David Hales & Bruce Edmonds, 2019. "Intragenerational Cultural Evolution and Ethnocentrism," Journal of Conflict Resolution, Peace Science Society (International), vol. 63(5), pages 1283-1309, May.
    4. Alexandros Rigos & Heinrich H. Nax, 2015. "Assortativity evolving from social dilemmas," Discussion Papers in Economics 15/19, Division of Economics, School of Business, University of Leicester.
    5. Yu, Fengyuan & Wang, Jianwei & Chen, Wei & He, Jialu, 2023. "Increased cooperation potential and risk under suppressed strategy differentiation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
    6. William Casey & Jose Andre Morales & Evan Wright & Quanyan Zhu & Bud Mishra, 2016. "Compliance signaling games: toward modeling the deterrence of insider threats," Computational and Mathematical Organization Theory, Springer, vol. 22(3), pages 318-349, September.
    7. Yutaka Nakai, 2014. "In-group favoritism due to friend selection strategies based on fixed tag and within-group reputation," Rationality and Society, , vol. 26(3), pages 320-354, August.
    8. Tanimoto, Jun, 2010. "The effect of assortativity by degree on emerging cooperation in a 2×2 dilemma game played on an evolutionary network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3325-3335.
    9. Fabio Della Rossa & Fabio Dercole & Anna Di Meglio, 2020. "Direct Reciprocity and Model-Predictive Strategy Update Explain the Network Reciprocity Observed in Socioeconomic Networks," Games, MDPI, vol. 11(1), pages 1-28, March.
    10. Andrew Buskell & Magnus Enquist & Fredrik Jansson, 2019. "A systems approach to cultural evolution," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    11. Matthijs van Veelen & Benjamin Allen & Moshe Hoffman & Burton Simon & Carl Veller, 2016. "Inclusive Fitness," Tinbergen Institute Discussion Papers 16-055/I, Tinbergen Institute.
    12. Lehmann, Laurent & Feldman, Marcus W., 2008. "The co-evolution of culturally inherited altruistic helping and cultural transmission under random group formation," Theoretical Population Biology, Elsevier, vol. 73(4), pages 506-516.
    13. Markus Brede, 2013. "Costly Advertising and the Evolution of Cooperation," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    14. Jae-Woo Kim, 2010. "A Tag-Based Evolutionary Prisoner's Dilemma Game on Networks with Different Topologies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 13(3), pages 1-2.
    15. Xiaojie Chen & Alana Schick & Michael Doebeli & Alistair Blachford & Long Wang, 2012. "Reputation-Based Conditional Interaction Supports Cooperation in Well-Mixed Prisoner’s Dilemmas," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    16. Ho Fai Chan & Ahmed Skali & David Stadelmann & Benno Torgler & Stephen Whyte, 2021. "Masculinity cues, perceptions of politician attributes, and political behavior," Economics and Politics, Wiley Blackwell, vol. 33(1), pages 148-171, March.
    17. Wang, Xiaofeng & Chen, Xiaojie & Gao, Jia & Wang, Long, 2013. "Reputation-based mutual selection rule promotes cooperation in spatial threshold public goods games," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 181-187.
    18. Sam P Brown & François Taddei, 2007. "The Durability of Public Goods Changes the Dynamics and Nature of Social Dilemmas," PLOS ONE, Public Library of Science, vol. 2(7), pages 1-7, July.
    19. Thomas W. Scott & Alan Grafen & Stuart A. West, 2022. "Multiple social encounters can eliminate Crozier’s paradox and stabilise genetic kin recognition," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    20. Wang, Xianjia & Lv, Shaojie, 2019. "The roles of particle swarm intelligence in the prisoner’s dilemma based on continuous and mixed strategy systems on scale-free networks," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 213-220.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2015-73-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.