IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2006-70-2.html
   My bibliography  Save this article

Characterising Land Holding Size Distributions in a Forest Reserve

Author

Abstract

This paper intends to characterise the land holding distributions in a Multi-Agent Based Simulation (MABS) model inspired by the Caparo Forest Reserve, in Venezuela. This forest has been highly intervened with and seriously altered by opportunistic, nomadic, land-seeking colonists. The distribution of land holding results from a process of land encroachment, allowed by a weak state showing ambiguous behaviour and regulations, permitting the rise of a land market in the forest area. A thorough understanding of this process is achieved by, first, modelling and simulating individual landowner's decision-making regarding land occupation, and secondly, characterising the collective land occupation process in the simulation model. The size distribution of land holding appears to be exponential rather than power law, as was initially expected. The paper not only explores whether leptokurtic distributions emerge in this complex social environment but also tries to identify the specific mechanisms and model assumptions that lead to these sorts of distributions, instead of alternative ones. Additionally, this paper relates these mechanisms to market structures and interactions, in order to give the results a richer real-world interpretation.

Suggested Citation

  • Oswaldo Terán & Johanna Alvarez & Magdiel Ablan & Manuel Jaimes, 2007. "Characterising Land Holding Size Distributions in a Forest Reserve," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-6.
  • Handle: RePEc:jas:jasssj:2006-70-2
    as

    Download full text from publisher

    File URL: https://www.jasss.org/10/3/6/6.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott Moss, 2001. "Game Theory: Limitations and an Alternative," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 4(2), pages 1-2.
    2. Berger, Thomas, 2001. "Agent-based spatial models applied to agriculture: a simulation tool for technology diffusion, resource use changes and policy analysis," Agricultural Economics, Blackwell, vol. 25(2-3), pages 245-260, September.
    3. Scott Moss & Bruce Edmonds & Steve Wallis, 1997. "Validation and Verification of Computational Models with Multiple Cognitive Agents," Discussion Papers 97-25, Manchester Metropolitan University, Centre for Policy Modelling.
    4. Bruce Edmonds & David Hales, 2004. "When and Why Does Haggling Occur? Some Suggestions from a Qualitative but Computational Simulation of Negotiation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 7(2), pages 1-9.
    5. Scott Moss & Helen Gaylard & Steve Wallis & Bruce Edmonds, 1998. "SDML: A Multi-Agent Language for Organizational Modelling," Computational and Mathematical Organization Theory, Springer, vol. 4(1), pages 43-69, March.
    6. Rosaria Conte & Mario Paolucci, 2001. "Intelligent Social Learning," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 4(1), pages 1-3.
    7. Happe, Kathrin & Kellermann, Konrad & Balmann, Alfons, 2006. "Agent-based analysis of agricultural policies: An illustration of the agricultural policy simulator AgriPoliS, its adaptation and behavior," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    2. Elodie Letort & Pierre Dupraz & Laurent Piet, 2017. "The impact of environmental regulations on the farmland market and farm structures: An agent-based model applied to the Brittany region of France," Working Papers SMART 17-01, INRAE UMR SMART.
    3. Sardorbek Musayev & Jonathan Mellor & Tara Walsh & Emmanouil Anagnostou, 2022. "Application of Agent-Based Modeling in Agricultural Productivity in Rural Area of Bahir Dar, Ethiopia," Forecasting, MDPI, vol. 4(1), pages 1-22, March.
    4. Robert Huber & Hang Xiong & Kevin Keller & Robert Finger, 2022. "Bridging behavioural factors and standard bio‐economic modelling in an agent‐based modelling framework," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 35-63, February.
    5. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    6. Elena G. Irwin, 2010. "New Directions For Urban Economic Models Of Land Use Change: Incorporating Spatial Dynamics And Heterogeneity," Journal of Regional Science, Wiley Blackwell, vol. 50(1), pages 65-91, February.
    7. Roberto Calisti & Primo Proietti & Andrea Marchini, 2019. "Promoting Sustainable Food Consumption: An Agent-Based Model About Outcomes of Small Shop Openings," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(1), pages 1-2.
    8. Britz, Wolfgang & van Ittersum, Martin K. & Oude Lansink, Alfons G.J.M. & Heckelei, Thomas, 2012. "Tools for Integrated Assessment in Agriculture. State of the Art and Challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(2), pages 1-26, August.
    9. Matteo Coronese & Martina Occelli & Francesco Lamperti & Andrea Roventini, 2024. "Towards sustainable agriculture: behaviors, spatial dynamics and policy in an evolutionary agent-based model," LEM Papers Series 2024/05, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Dimitri Gagliardi & Francesco Niglia & Cinzia Battistella, 2012. "Use of multi-level self-regulating agents to evaluate the impact of innovation policy for the agro-food sector in the Region of Puglia, Italy," Openloc Working Papers 1205, Public policies and local development.
    11. Feola, Giuseppe & Binder, Claudia R., 2010. "Towards an improved understanding of farmers' behaviour: The integrative agent-centred (IAC) framework," Ecological Economics, Elsevier, vol. 69(12), pages 2323-2333, October.
    12. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    13. Tian, Qing & Holland, John H. & Brown, Daniel G., 2016. "Social and economic impacts of subsidy policies on rural development in the Poyang Lake Region, China: Insights from an agent-based model," Agricultural Systems, Elsevier, vol. 148(C), pages 12-27.
    14. Rammel, Christian & Stagl, Sigrid & Wilfing, Harald, 2007. "Managing complex adaptive systems -- A co-evolutionary perspective on natural resource management," Ecological Economics, Elsevier, vol. 63(1), pages 9-21, June.
    15. Balmann, Alfons & Valentinov, Vladislav, 2016. "Towards a Theory of Structural Change in Agriculture: Just Economics?," 149th Seminar, October 27-28, 2016, Rennes, France 246420, European Association of Agricultural Economists.
    16. Diego Ferraro & Daniela Blanco & Sebasti'an Pessah & Rodrigo Castro, 2021. "Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach," Papers 2109.01031, arXiv.org, revised Sep 2021.
    17. Pepijn Schreinemachers & Thomas Berger & Aer Sirijinda & Suwanna Praneetvatakul, 2009. "The Diffusion of Greenhouse Agriculture in Northern Thailand: Combining Econometrics and Agent‐Based Modeling," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 513-536, December.
    18. Kellermann, Konrad & Sahrbacher, Christoph & Balmann, Alfons, 2008. "Land Markets In Agent Based Models Of Structural Change," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6647, European Association of Agricultural Economists.
    19. Gagliardi, Dimitri & Niglia, Francesco & Battistella, Cinzia, 2014. "Evaluation and design of innovation policies in the agro-food sector: An application of multilevel self-regulating agents," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 40-57.
    20. Laura Schmitt Olabisi & Ryan Qi Wang & Arika Ligmann-Zielinska, 2015. "Why Don’t More Farmers Go Organic? Using A Stakeholder-Informed Exploratory Agent-Based Model to Represent the Dynamics of Farming Practices in the Philippines," Land, MDPI, vol. 4(4), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2006-70-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.