IDEAS home Printed from https://ideas.repec.org/a/jaf/journl/v8y2017i1n80.html
   My bibliography  Save this article

L’indice boursier islamique est-il moins volatile que son homologue conventionnel ? Application du modèle à changement de régimes de Markov

Author

Listed:
  • Abdessamad OUCHEN

Abstract

Afin de comprendre les asymétries cycliques dans les séries des rendements des principaux indices boursiers, il est primordial de recourir aux spécifications non linéaires qui distinguent entre les phases d’expansion et celles de récession. Nous avons estimé ainsi un modèle à changement de régimes de Markov, à deux états et avec une spécification autorégressive d’ordre 2, de la série des rendements mensuels de l’indice islamique DJIM (Dow Jones Islamic Market) et de celle des rendements mensuels de son homologue conventionnel DJ (Dow Jones) durant la période qui s’étale du Janvier 2000 au Janvier 2017. Ce modèle a mis en évidence trois principaux résultats. Primo, l’existence de deux régimes distincts sur le marché boursier américain : l’état de crise et celui de stabilité, pour les deux indices, mais l’indice islamique est moins turbulent par rapport à son homologue conventionnel. Secundo, une période de volatilité élevée dure près de deux mois pour le cas de l’indice conventionnel et près d’un mois et une semaine pour le cas de l’indice islamique. Tertio, le modèle à changement de régimes de Markov a permis la détection de trois bulles : la bulle Internet (1998-2000), la bulle immobilière (1995-2006), pour les deux indices, et la bulle financière chinoise (2014-2015) uniquement pour l’indice conventionnel.

Suggested Citation

  • Abdessamad OUCHEN, 2017. "L’indice boursier islamique est-il moins volatile que son homologue conventionnel ? Application du modèle à changement de régimes de Markov," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 8(1), June.
  • Handle: RePEc:jaf:journl:v:8:y:2017:i:1:n:80
    as

    Download full text from publisher

    File URL: http://34.195.102.181/journal/index.php/index/article/view/96
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Medhioub, Imed, 2007. "Asymétrie des cycles économiques et changement de régimes : cas de la Tunisie," L'Actualité Economique, Société Canadienne de Science Economique, vol. 83(4), pages 529-553, décembre.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdessamad OUCHEN, 2017. "L’indice boursier islamique est-il moins volatile que son homologue conventionnel ? Application du modèle à changement de régimes de Markov," Journal of Academic Finance, RED research unit, university of Gabes, Tunisia, vol. 8(1), June.
    2. Abdessamad Ouchen, 2022. "Is the ESG portfolio less turbulent than a market benchmark portfolio?," Risk Management, Palgrave Macmillan, vol. 24(1), pages 1-33, March.
    3. Kamel Helali, 2022. "Markov Switching-Vector AutoRegression Model Analysis of the Economic and Growth Cycles in Tunisia and Its Main European Partners," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(1), pages 656-686, March.
    4. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    5. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    6. Nektarios Aslanidis, 2002. "Regime-switching behaviour in European," Working Papers 0202, University of Crete, Department of Economics.
    7. Kushal Banik Chowdhury & Kaustav Kanti Sarkar & Srikanta Kundu, 2021. "Nonlinear relationships between inflation, output growth and uncertainty in India: New evidence from a bivariate threshold model," Bulletin of Economic Research, Wiley Blackwell, vol. 73(3), pages 469-493, July.
    8. Donald W.K. Andrews, 1992. "An Introduction to Econometric Applications of Functional Limit Theory for Dependent Random Variables," Cowles Foundation Discussion Papers 1020, Cowles Foundation for Research in Economics, Yale University.
    9. Timo Teräsvirta, 2017. "Nonlinear models in macroeconometrics," CREATES Research Papers 2017-32, Department of Economics and Business Economics, Aarhus University.
    10. Pablo Mejia-Reyes & Denise Osborn & Marianne Sensier, 2010. "Modelling real exchange rate effects on output performance in Latin America," Applied Economics, Taylor & Francis Journals, vol. 42(19), pages 2491-2503.
    11. Clements, Michael P & Smith, Jeremy, 1999. "A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
    12. Richard Ashley, 2012. "On the Origins of Conditional Heteroscedasticity in Time Series," Korean Economic Review, Korean Economic Association, vol. 28, pages 5-25.
    13. Heather M. Anderson, 2002. "Choosing Lag Lengths in Nonlinear Dynamic Models," Monash Econometrics and Business Statistics Working Papers 21/02, Monash University, Department of Econometrics and Business Statistics.
    14. Öcal Nadir, 2000. "Nonlinear Models for U.K. Macroeconomic Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(3), pages 1-15, October.
    15. Nadir Ocal & Denise R. Osborn, 2000. "Business cycle non-linearities in UK consumption and production," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(1), pages 27-43.
    16. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    17. Lawrence Xaba & Ntebogang Moroke & Johnson Arkaah & Charlemagne Pooe, 2015. "A Comparative Study of Stock Price Forecasting using nonlinear models," Proceedings of International Academic Conferences 2704207, International Institute of Social and Economic Sciences.
    18. Kushal Banik Chowdhury & Nityananda Sarkar, 2019. "Regime Dependent Effect Of Output Growth On Output Growth Uncertainty: Evidence From Oecd Countries," Bulletin of Economic Research, Wiley Blackwell, vol. 71(3), pages 257-282, July.
    19. Nektarios Aslanidis, 2002. "Smooth Transition Regression Models in UK Stock Returns," Working Papers 0201, University of Crete, Department of Economics.
    20. Corinne Perraudin, 1995. "La dynamique asymétrique de l'emploi au cours du cycle," Économie et Prévision, Programme National Persée, vol. 120(4), pages 121-139.

    More about this item

    Keywords

    finance islamique; indice; islamic finance; index;
    All these keywords.

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • P4 - Political Economy and Comparative Economic Systems - - Other Economic Systems

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jaf:journl:v:8:y:2017:i:1:n:80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oussama Quentin Kasseh (email available below). General contact details of provider: https://edirc.repec.org/data/urredtn.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.