IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v48y2014i4p684-694.html
   My bibliography  Save this article

Market Competition and Greening Transportation of Airlines Under the Emission Trading Scheme: A Case of Duopoly Market

Author

Listed:
  • Jiuh-Biing Sheu

    (Department of Business Administration, National Taiwan University, Taipei 10617, Taiwan, ROC)

  • Fang Li

    (Department of International Shipping and Logistics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China)

Abstract

In response to the growing need to reduce greenhouse gas (GHG) emissions worldwide, the emission trading scheme (ETS) has become one of the most efficient instruments to reduce GHG emissions. For example, the European Union (EU) now charges a carbon emission fee to airlines flying into or out of EU airports. This work investigates the effect of carbon permits (CPs) under the cap-and-trade scheme on competition and green transportation strategies of global airlines using a behavioral economics approach. One feature of the proposed model is that passenger attitudes toward green transportation service with perceived uncertainties are conceptualized into airline response functions to characterize how airlines respond to the CP instrument via pricing and investments in green transportation. Qualitative analyses and a numerical study of the ETS-CP instrument provide important managerial insights into airline repricing and green transportation investment strategies. Most importantly, this work generates a relationship between the green transportation and consumer behavior fields via behavioral economics theory.

Suggested Citation

  • Jiuh-Biing Sheu & Fang Li, 2014. "Market Competition and Greening Transportation of Airlines Under the Emission Trading Scheme: A Case of Duopoly Market," Transportation Science, INFORMS, vol. 48(4), pages 684-694, November.
  • Handle: RePEc:inm:ortrsc:v:48:y:2014:i:4:p:684-694
    DOI: 10.1287/trsc.2013.0473
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2013.0473
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2013.0473?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sgouridis, Sgouris & Bonnefoy, Philippe A. & Hansman, R. John, 2011. "Air transportation in a carbon constrained world: Long-term dynamics of policies and strategies for mitigating the carbon footprint of commercial aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1077-1091.
    2. Morrell, Peter, 2007. "An evaluation of possible EU air transport emissions trading scheme allocation methods," Energy Policy, Elsevier, vol. 35(11), pages 5562-5570, November.
    3. Bolton, Ruth N & Drew, James H, 1991. "A Multistage Model of Customers' Assessments of Service Quality and Value," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 17(4), pages 375-384, March.
    4. Anger, Annela & Köhler, Jonathan, 2010. "Including aviation emissions in the EU ETS: Much ado about nothing? A review," Transport Policy, Elsevier, vol. 17(1), pages 38-46, January.
    5. Albers, Sascha & Bühne, Jan-André & Peters, Heiko, 2009. "Will the EU-ETS instigate airline network reconfigurations?," Journal of Air Transport Management, Elsevier, vol. 15(1), pages 1-6.
    6. Scheelhaase, Janina D. & Grimme, Wolfgang G., 2007. "Emissions trading for international aviation—an estimation of the economic impact on selected European airlines," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 253-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue, Xuanyu & Byrne, Julie, 2024. "Identifying the determinants of carbon emissions of individual airlines around the world," Journal of Air Transport Management, Elsevier, vol. 115(C).
    2. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    3. Wang, Xinyu & Sethi, Suresh P. & Chang, Shuhua, 2022. "Pollution abatement using cap-and-trade in a dynamic supply chain and its coordination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Jun Tu & Juan Du & Min Huang, 2023. "Competition between Green and Non-Green Travel Companies: The Role of Governmental Subsidies in Green Travel," Sustainability, MDPI, vol. 15(9), pages 1-33, May.
    5. Yuan Yuan & Feng Cai & Lingling Yang, 2020. "Renewable Energy Investment under Carbon Emission Regulations," Sustainability, MDPI, vol. 12(17), pages 1-15, August.
    6. Peng Du & Lei Xu & Rou Luo & Mingzhu Hou, 2024. "Competing with Low Cost Carrier in a Sustainable Environment: Airline Ticket Pricing, Carbon Trading, and Market Power Structure," Sustainability, MDPI, vol. 16(2), pages 1-17, January.
    7. Aasheesh Dixit & Patanjal Kumar & Suresh Jakhar, 2021. "Airport-Airline Coordination with Economic, Environmental and Social Considerations," Papers 2110.11694, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sheu, Jiuh-Biing, 2014. "Airline ambidextrous competition under an emissions trading scheme – A reference-dependent behavioral perspective," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 115-145.
    2. Miyoshi, Chikage, 2014. "Assessing the equity impact of the European Union Emission Trading Scheme on an African airline," Transport Policy, Elsevier, vol. 33(C), pages 56-64.
    3. Tiziana D'Alfonso & Changmin Jiang & Valentina Bracaglia, 2015. "Air transport and high-speed rail competition: environmental implications and mitigation strategies," DIAG Technical Reports 2015-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    5. Sungwook Yoon & Sukjae Jeong, 2016. "RETRACTED: Carbon Emission Mitigation Potentials of Different Policy Scenarios and Their Effects on International Aviation in the Korean Context," Sustainability, MDPI, vol. 8(11), pages 1-21, November.
    6. Armin Ibitz, 2015. "Towards a global scheme for carbon emissions reduction in aviation: China’s role in blocking the extension of the European Union’s Emissions Trading Scheme," Asia Europe Journal, Springer, vol. 13(2), pages 113-130, June.
    7. Koopmans, Carl & Lieshout, Rogier, 2016. "Airline cost changes: To what extent are they passed through to the passenger?," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 1-11.
    8. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    9. Estelle Malavolti & Marion Podesta, 2011. "Inclusion of the aviation sector into the emission trading scheme : an economic analysis," Post-Print hal-01022239, HAL.
    10. Tang, Ling & Wang, Haohan & Li, Ling & Yang, Kaitong & Mi, Zhifu, 2020. "Quantitative models in emission trading system research: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Cui, Qiang & Lin, Jing-ling & Jin, Zi-yin, 2020. "Evaluating airline efficiency under “Carbon Neutral Growth from 2020” strategy through a Network Interval Slack-Based Measure," Energy, Elsevier, vol. 193(C).
    12. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    13. Kang, Yicheng & Liao, Sha & Jiang, Changmin & D’Alfonso, Tiziana, 2022. "Synthetic control methods for policy analysis: Evaluating the effect of the European Emission Trading System on aviation supply," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 236-252.
    14. Pérez-Calderón, Esteban & Milanés-Montero, Patricia & Gutíerrez-Pérez, Cristina, 2021. "Climate change, where do we come from and where are we going? European aviation sector behaviour," Transport Policy, Elsevier, vol. 114(C), pages 40-48.
    15. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    16. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    17. Anger, Annela & Köhler, Jonathan, 2010. "Including aviation emissions in the EU ETS: Much ado about nothing? A review," Transport Policy, Elsevier, vol. 17(1), pages 38-46, January.
    18. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    19. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
    20. Brueckner, Jan K. & Abreu, Chrystyane, 2017. "Airline fuel usage and carbon emissions: Determining factors," Journal of Air Transport Management, Elsevier, vol. 62(C), pages 10-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:48:y:2014:i:4:p:684-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.